Lectures on Chapter 23: Faraday’s Law and Inductance

EMF
It takes work to move charges around a circuit. The emf is the amount of work done
per unit charge
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Recall that work is defined as

W = /ﬁ . d3 F#: force on object
d§ = path element

The work done in dragging a charge around a circuit is

W = ?{ F.ds integrate around a closed loop

Let f be the force per unit charge
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Then the work per unit charge done in dragging a charge around a circuit is the emf &:
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s_dq_ d_yffds

We might be tempted to say that f q = E where E is the electrostatic electric field
set up by charges. But you can’t get a steady current flow by putting some charges near
a wire. If you put a wire in an external electrostatic E field produced by stationary
charges, the charges in the conducting wire would quickly rearrange themselves to make
the wire an equipotential. But you need a voltage drop to get current to flow.

Another way to see that f #* Eelectosmtic is to note that

7{Eelectrostatic -ds =0

= Emf due to Eelectmstatic is zero.
Recall our definition of electric potential
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AV = % - Va = - / Eelectrostatic -ds
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If we start at point a, go around a loop, and end at point a, then
a
AV:—/ F-di=V,-V,=0

So in our expression & = $ f -ds, f is a force per unit charge that is not due to electrostatic
charges. f is a force that keeps the charges moving. Eelectmsmtw doesn’t do this. f can
be the electric field E produced by an ongoing chemical reaction in a battery. Or f can
be the force produced by the conveyor belt in a van de Graaff generator.

One of the most important sources of an emf is caused by the motion of a loop of wire
through a magnetic field. This is the principle behind electric generators. In the shaded
region, there is a uniform magnetic field B, pointing into the page, and the resistor R
represents whatever it is (maybe a light bulb or a toaster) we’re trying to drive a current
through.
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If the loop is pulled to the right with velocity ¥/, the charges in the vertical segment ab
feel a magnetic force guB in the direction of the wire. (The other segments feel forces
perpendicular to the wire.) The figure below shows the forces if I = 0.
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The force quB on the charges in the segment ab drives a current around the loop in the
clockwise direction. The force per unit charge is
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Let h = height of loop = distance from a to b. Then the emf is
o b c d _, a
5=]ff-d§=/f-d§+/f-d§+/f-d§+/ 7-ds (1)
(& a b c d

The integrals from b — ¢ and from ¢ — d are 0 because f L ds The integral from d — «a
is zero because it is outside the B field. So

b
£ = /f-d§
= v Bh

We can relate the emf to the magnetic flux ®5 through the loop.
op= [ B-da
5

This is like the electric flux ®; = [ E - da that we defined for Gauss’ law. However, the
surface S we are integrating over for ®z is not closed. da is an element of the surface
pointing in the direction normal to the element da. Which normal you pick is arbitrary
at the moment. But it will turn out that da@ points according to the right hand rule for
the curve C. ¢, f -ds. You can think of &5 as the number of magnetic field lines piercing
the surface S.

B

Units

[®p] = tesla - meter? = weber = Wb

1 weber =1 Wb = 1 T-m?

Let’s calculate the flux through our loop.
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Let’s choose the normal n to the loop to the point into the page. When we evaluated
$c f - ds, we went around the loop in a specific direction. If the fingers of our right hand
curl in this direction, our thumb points in the direction of the normal 7. So 7 points in
the same direction as B. So d@ points in the same direction as B. Then

@B:/é-da=B-area:th

As the loop moves, the flux decreases:

dd dz dz

We need the minus sign to indicate that the flux is decreasing. Compare this with our

expression for the emf:
& = Bhv (2)

O 3
This is called Faraday’s Law. Thus the emf generated is minus the rate of change of
flux through the loop. We derived this relation for a special case but it is true in general.
This is true for a loop of arbitrary shape moving in any direction through a magnetic
field. If we have a coil with N turns of wire that experiences changing flux, then an
induced emf appears in every turn and we add these emf’s:
g— N5
dt

Faraday’s law is the principle behind electric generators. Emf that can drive electric

currents are generated by changing the flux through coils of wire.

E =

- B
<L ® %R

So far we have been considering a static B field and a moving loop. What happens
if we hold the loop stationary and move the source of the magnetic field with a velocity
opposite to that of the loop when it was moved? Faraday found that exactly the same emf
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is produced. What matters is the relative motion of the loop and B. How did Faraday
interpret this? What makes the charges move?

ﬁmag:qﬁxgzo

because the velocity ¥ of the charge is zero (the loop is stationary). To get the electrons to
flow, we need an electric field. This must mean that a time varying B field produces
an F field! To see this mathematically, note that

Ezfﬁ-d* 4
A § (4)
and 0P p
B S
__®r__%[5.
£ dt dt/s da ()

— ]{E-dé’:—i/g-d(i
6, dt Js

Here the closed loop C' is spanned by the surface S.

da

C

The direction of ds around C' is related to the direction of dad by the right hand rule.
Notice that the changing magnetic field on the right hand side of the equation produces
the E field on the left hand side.

Faraday’s law tells us that we can generate an E field simply by changing the magnetic
flux. It doesn’t matter how we change the flux. We can move the loop, or we can move
the magnet, or we can just increase or decrease the magnetic field while the loop and
the magnet are stationary. Actually, you don’t need to have a wire to induce an E field.
In empty space, a changing B field will induce an E field. Applications: generators,
microphones, stereo speakers.

Lenz’s Law

Lenz’s law gives us an early way to keep track of the direction of current flow induced

by changing flux:

“The emf induced is in such a direction, that if a current flows, the mag-
netic field produced by the induced current opposes the change in flux that
produced the emf.”



This is the meaning of the minus sign in Faraday’s law. Analogy: Let’s suppose money
going into your bank account is like magnetic flux going through a loop of wire. Suppose
you earn $1000/month which you put into your bank account. Now if your boss says that
you're going to get a pay cut and that you’ll be earning $500/month, you would oppose
this change. There’s still money going into your bank account, but it’s less. There’s still
flux going through the loop, but it’s less. So you would try to supplement your earnings
with an extra job. The loop has an induced current flowing in it that supplements the
external reduced flux.
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You probably wouldn’t oppose a salary raise so let me draw another analogy. Let’s
suppose you are in a boat in the middle of a lake. The boat springs a leak and water
starts to pour in. This is like increasing flux through the loop. You would oppose this
change by trying to reduce the amount of water pouring in; i.e., by bailing water out
of the boat. Similarly, the induced current in the loop produces flux opposite to the
increasing external flux.
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The basic message of Lenz’s law: Oppose change.
Example: Jumping Ring
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If you place a metal ring on top of a solenoid, then turn on the current in the solenoid,
the ring will jump off. (It helps to have an iron core in the solenoid to increase the B
field.) Why does the ring jump off? When you turn on the current, the flux through the
ring suddenly increases from zero to non-zero value (% #* 0). This induces an emf in
the ring that drives a current in the ring. According to Lenz’s law, the induced current
in the ring will produce a B field in the opposite direction to that of the solenoid. So
like 2 bar magnets , the ring and solenoid repel and the ring flies off.

Example
A

B(t)

E if By(t)
is decreasin

A uniform magnetic field éo(t), pointing straight up, fills the shaded circular region. If
it changes with time, what is the induced electric field E?
Solution: Draw a loop C of radius r and apply Faraday’s law.

L dbs  d oo
) Bods=-"F = dt/sB da (6)

where S = surface spanned by loop C. Let’s evaluate the left hand and right hand sides
of this equation.

fﬁ-dE’ = FE - -27r
c

by d [~ . d, L dB(t)
% = % SB -dad = p (m“ Bo(t)) =t —
- d®p
E.-d§ = ———
f,E-ds dt
E-2mr = —mr? dBo(?)
dt
- By ~ A -
E = —%%gb (¢ means E is circumferential.)

Once you figure out which way Eind points, use the right hand rule to get the direction
of E.



If the circular region is mounted on a wheel that’s free to rotate and there is a line of
uniform charge mounted on the rim of the wheel, then the wheel will start to spin as the
B field decreases because the induced E field will push the charges and hence the wheel.
Where does the angular momentum come from? It can’t come from nowhere because
angular momentum is conserved. It turns out that the angular momentum comes from
the E and B fields. E and B have energy, momentum, and angular momentum. The
angular momentum density is Lz = o7 x (E x B).
Power Dissipation
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Let’s revisit the loop of wire that we were pulling out of the magnetic field. We saw that
the emf induces a current I that tries to replenish the flux. The current in the loop feels
a force

F=1Il{xB

The forces are shown in the figure. Since F, = —ﬁ3, they cancel out. Only F_"_l) survives.
F} opposes the force we use to pull the loop out of the B field. Note that [¢| = h and
71 B. So

F, = I¢Bsin 90° = I/B = IhB (7)
We can find I by noting that [ = £/R and
£ Bl
° R~ R



You do work on the loop because F 1 opposes you. You must apply at least a force F that
is equal and opposite to F to keep the loop moving. F} is like friction force. (Do you
need to apply more than F to keep the loop moving? No, if & = constant, @ = dv//dt = 0
= ﬁemtra = 0)

, -, Bhv B%h?v
Pl = |F| p : Q
The rate at which you do work is the power you expend:
B%h2v B2h%y?
v=—p v 7 (9)

The rate at which you do work is turned into power dissipated in the resistor R:

P = I’R
o Bhv
R
Bho\? B2h2p?
P = IPR=(—"") R=
- () ==

Notice that I?R = Fw, i.e., the rate of dissipating power in the resistor equals the rate
at which you do work.
Inductance
Suppose we have 2 loops of wire with one above the other.

Loop 2

o
[y
Aol

Loop 1
ly

If we run a current I; through loop 1, it will produce a magnetic field Bi. Let @, be the
flux of B; passing through loop 2:

énggl'dag
2

From the Biot-Savart law

= Mo dsx 1
B =—17§ 10
YT n! r3 (10)
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we see that B is proportional to I; which implies that ®, is proportional to [;:
(I)Q = M21[1 (11)

where the constant of proportionality My, is called the mutual inductance.
There are 2 things to note about mutual inductance:

1. This is a purely geometric quantity. It depends on the sizes, shapes, and relative
distance of the loops. It does not depend on the current I.

2. M21 = M12 = M
This implies that the flux ®, through 2 produced by a current I flowing through
loop 1 is exactly the same as the flux ®, through 1 produced by I flowing through
loop 2:

Oy = Moy I = Mol = 4

1

If we vary the current in loop 1, &, will vary and this will produce an emf in loop 2:

_d®, dl,

dat T at

So loop 1 can generate a current in loop 2 without touching it.
Note that if the flux is through a coil with N turns, then & — N®.

E9 =

Coil 2
B1 Bl
Loop 1
Iy
Thus
N2(b2 = M2111
dd dI
52 = _N2 2:_ 21 !

dt



Self-Inductance
We don’t need two loops to see this effect. If we have only one loop with a current
flowing around it, the current produces a B field. This B field produces a flux through
the loop.

B

The flux is proportional to the current:
d=1LI (12)

where [ is the current. The constant of proportionality L is called the self-inductance
of the loop. As with M, it depends solely on the geometry (size and shape) of the loop.
If the current changes, then there will be a changing flux through the loop which in turn
will produce an emf in the loop given by Faraday’s law:

dd
&€=
dl

= —L—
£ dt

The minus sign implies that whenever we change the current, the change produces a
"back emf” that opposes the change. Thus currents want to stay constant. L gives the
system inertia. It acts like a mass does in a mechanical system.
Units of Inductance
Inductance is measured in henries (H):

1 henry = 1H = 1‘721;7;6:::
dt
-l 5]
Note that if we replace a loop with a coil that has N turns, then ® — N®:
N® =LI (13)
and o dl dI
E=—- E:_LE = EZ_LE (14)
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as before.
Recipe to Calculate Inductance L
Problem: Given geometry of inductor, find the self-inductance L.

Recipe for the Solution: Use

NO
L=— 1
; (15)

1. Assume current I flows through the inductor.

2. Calculate B using Ampere’s Law or Biot-Savart Law.

3. Calculate flux ® = [ B - da.

4. Use L = % where N = total number of turns of wire in the inductor

Inductance of a Solenoid

(99000)-0__0

Suppose we have a very long solenoid with cross sectional area A and n turns per unit
length. What is the self-inductance per unit length L/¢?

Solution: Use
N®

For a length £ of the solenoid, there are N = nf turns. Assume a current I flows through
the coil. (This is analogous to assuming a charge ¢ on a capa(:ltor when we calculate

capacitance.) To calculate the flux ® = [ B - dd, we need B.

To find B', use Ampere’s law:

Bl = ponfll
B = pugnl
o = /ﬁ-dc?:BA:,uonIA
I - No _ (nf)(uonlA) — oA
1 I
L
7 = pon’A
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Energy Stored in Magnetic Fields

In order to get current started in a current loop, we need to do work against the back
emf that opposes the increase in current. The work we do gets stored as potential energy.
So to find the potential energy, we calculate how much work is done as follows. The rate
of doing work (or power going into the inductor) is given by:

dw  dW dgq

dt  dg dt
Note that dg/dt = I, the current. To find dW/dg, note that the back emf &, =
—L(dI/dt). So the work done by the battery per unit charge to overcome the back

emf is dW/dq = —&1. Recall that & = dW/dq is the work lost per unit charge in going
through the inductor. The energy gained by the magnetic field is minus this. Thus

AW dW dg dI
A _ e T= (L=
&l = ( dt

(17)

At dg dt
dW = LIdI

)

Integrate, starting from I = 0 at ¢ = 0, to get the total amount of work done by the
battery to get to current I:

I
W o= /dW: LIdI
I=0

1
— LI
W=

Since this work goes into magnetic potential energy Ug, we have
Ugp=W (18)

or 1
Up = 5L1'2 (19)

Once we get the current going, where did all the energy we put into the system go?
Answer: the energy is stored in the magnetic field. In fact the energy density is given by

Us _ B?
volume 2y

up =

This equation is true in general. However, let’s prove it for the special case of an infinite

solenoid.
AT
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Plug Up = 1 LI? into

Ug 1 LI? 1 LI?
u = = — = —
B~ Jolume ~ 2volume 2 A¢
where /£ is the length of a section of the solenoid and A is the cross sectional area of the

solenoid. So A/ is the volume of that section of solenoid. To get up in terms of B, note
that B = poIn in a solenoid.

B
B = ugln = I=— (20)
HoT
So )
1LI* 1L (B
= - = ———| — 21
YBT9TAr T 2Ar (,uon> (21)
To get rid of the self-inductance L, we recall that
L
7~ pon® A
11L/B\* 1, , [ B B?
= ——— | — = — A -
— s 2A¢ <,u0n> 24 (Hon”4) <u8n2> 20
So B
= — 22
e 240 (22)

as advertised. This is the magnetic analog of ug = %50E2.
RL Circuits
Consider a circuit with a resistor and an inductor in series.
R
a S
- AW
E p—

e,

When we close the switch on a, current starts to flow —- % # (0. The rise in current
produces an induced emf in the inductor that opposes the rise in current: £, = —LdI /dt.
As time goes on, the rate of increase of the current becomes less rapid and the magnitude
of the self-induced emf, £, = —LdI/dt, decreases because dI/dt decreases. As t — oo,
the current becomes steady and constant, % -0 = &,—0,and I =E&/R, ie.
the total voltage drop is across the resistor.

When the switch a is closed, we get the equivalent circuit:
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Let’s apply the loop rule. We go around the circuit in a clockwise fashion. Then we get
voltage drops across the resistor and inductor and a voltage gain from the battery.

I
—IR —L% +£=0 (23)
———r

Er
or

dI
£=IR+1%
M7

We want to solve this for I(¢) with the initial condition I(¢ = 0) = 0, i.e. initially there
is no current. The solution is

I(t) = % (1— e %) (24)

. . d _ 8 _ . d _ .
You can check this by plugging I(¢) and d—i = fe R/L into IR—{-Ld—i = £ and seeing that
it works. Let’s look at c
1) = (1 — e ) (25)

I(t)

t

Att=0,1 = %(1 — 1) = 0 as desired. Since the voltage drop across the resistor is

IR, there is no voltage drop across the resistor at ¢ = 0. All the voltage drop is initially

across the inductor. As ¢ — oo, e ®/L — 0, and I — £, i.e., all the voltage drop is

across the resistor. Since I approaches a constant (£/R), % — 0 and no voltage drops
across the inductor (L% — 0) as t — oco. Graphically we have:
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Time Constant
If we write e ®/L = ¢~*/70 where 7, = L/R, the inductive time constant 7, = L/R
describes the characteristic time over which the current rises to an appreciable value.
(Since the exponent —Rt/L must be dimensionless, L/R must have the dimensions of
time. You can also check explicitly that [L/R] = time.) If we set t = 7y,
£ £ £

1=~ (1—e ) |imr, = = (1-e')=063 = (26)

i.e., the current has reached 63% of its final value at t = 7, = L/R.

et °

e,

What happens if we remove the battery by closing the switch to 4? (Close b before
opening a so the current keeps flowing.) Then our circuit looks like

R

(1) 3

Without a battery the current will decrease with time: dI/dt < 0. Once again the
inductor will resist this change by producing a back emf (—LdI/dt). We can write down
a differential equation for this circuit by applying the loop rule (or by setting & = 0 in
our previous equation):

dl

IR-1% g
di
dl

R+ — g
T
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The solution of this equation is
I(t) = Iye V™ (27)
where 7, = L/R. At t=0,1 =1y =&/R. Ast — 0o, I — 0 = the current is decaying
to zero as expected. The characteristic time associated with this decay is 7, = L/R. At
t= TL,
It =71) = Le! =0.37I, (28)

i.e. the current has decayed to 37% of its original value.

I(t)

|~gt /TL

t

Adding Inductances
(Your book forgets to tell you this.) If there are 2 or more inductors in a circuit you
add them the same way as you do resistors.
In Series

N

Suppose we shut switch S in the circuit shown. Then the current I starts to flow. Since

I increases, % > (0. The loop rule gives
dl dl
“Li — Ly +E=0 (29)

The sum of the voltage drops across L; and Ly equals the total voltage £ across them.
So we can write

dl dl

E = Li— + Ly—
v Ty

dl

= (L1 + Lo)—

dt
dl

Leg a
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where
Leqg = Ly + Lo (30)

/o

Compare this to R.; = R; + Ry which is the relation for resistors in series. In general,
for n inductors in series,

Leg=> L; (31)
=1

In Parallel

IW )

~
|
T
e @ H L

Suppose we shut the switch in a circuit where the inductors are in parallel. Then the
voltage drop across each inductor is the same but the current through each is different if
L]_ 7é LQ. Thus

dI, dI,
- =L — 7. 22
¢ Ut £ 2 dt

a, € a, &
dt I dt Ly

Now use the junction rule:

dl al n dl,
dt dt dt




where

=—+— (32)

Compare this to 1/R., = 1/R; +1/R; for resistors in parallel. In general, for n inductors
in parallel,

Lleq -3 (%) (33)

=1
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