Lectures on Chapter 22: Magnetic Forces and Magnetic Fields

Magnetism
Everyone has played with permanent magnets. You probably know there is a north
pole and a south pole on a bar magnet. We can draw magnetic field lines just as we drew
electric field lines. The rules: (1) the direction of the tangent to a magnetic field line
at any point gives the direction of B at that point, and (2) the spacing of the lines is a
measure of the magnitude. Lines emerge from N and enter at S.
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If you have 2 bar magnets, opposite ends attract, i.e., N attracts S. Likes repel, e.g. N
repels N. The earth’s north pole is a geomagnetic S because field lines enter and point
into the earth at the earth’s north pole. Antarctica is a magnetic north pole because
field lines point up and out of the earth’s surface. One way to test to see which way the
lines point is to use a compass.
Force Law
What happens if we put a charge +¢ in a magnetic field B? If it’s sitting still, the
answer is nothing. But if it’s moving with velocity , it feels a force perpendicular to v
and to B.
Fy = qu X B

¢ can be positive or negative. F' changes direction if ¢ — —¢. So
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There are several things to notice about Fy:
1.IfFg L 7= |U| doesn’t change, only direction of ¥ changes in a uniform B field.

(Acceleration comes from change of direction #.) So no change in the kinetic energy
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2. If 7 || B, Fig = ¢ x B = 0. Particle moving parallel to B feels no force.

Fg = quBsin ¢ ¢ = angle between ¢ and B

sin(¢ = 0) = sin(¢ = 180°) = 0. This applies if 7 || B
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3. Maximum force of deflection occurs for ¢ =90° = v L B

4. Fgxq, Fp xv Bigger ¢ = Bigger Fp
Bigger v = Bigger I'p

5. Magnetic forces do no work because the force is perpendicular to the direction that
the particle moves:

Wg = /ﬁB-dz”:/q(ﬁxE)-df

Use dl = Gdt= Wp=q(@xB)-5dt=0
0

Units
o _n
N N
[B] = Comls = Tesla =T (Ltesla = 1T = 1m)

Since 14 =1C/s = 1T = 1o = Ligro— = 1450

Another common unit of B is the gauss (G):

1T =10* G



The earth’s magnetic field is ~ 1G ~ 10~* T.
Going in Circles
Suppose ¥ lies in a plane L B. Here we are considering uniform B. A charge of +q
moves with velocity #. Fg L @ implies that the charge goes in a circle. (Think of whirling
a rock around with a string. The force of the string points radially inward.)

AB

[ R~
C‘v/

N B V.
Be \
AN
M
+q
Since 7 L B,
Fp =q¥ x B = quB(—7) (1)
Set this equal to the centripetal force:
vB—mUZ:>r—mv (2)
e = r ~ ¢B

r is the radius of orbit. This equation is called the cyclotron formula. Larger B —
smaller orbit. Larger v = bigger orbit.

Period = T = circumference/speed = 2nr /v = (27 /v)(mv/qB) = 27m/qB
Notice that the period 7" has no dependence on the velocity v.
Frequency = f =1/T = ¢B/2mm
Angular Frequency = w = 2nf = 2n(¢B/2mm) = ¢B/m
Hall Effect
Consider a metal bar with current flowing in it carried by electrons with an average
drift velocity vy
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Now suppose we apply a magnetic field in the 7 direction. This initially causes a downward
deflection of the moving electrons.
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Negative charge builds up at the bottom; positive charge at the top.
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The transverse electric field E, counters the magnetic force so that the electrons again
flow in the —; direction. Notice that if the charge carriers had been positively charged,
E, would point in the opposite direction (f in same direction as before). Thus if we
measure the voltage difference between top and bottom, the sign tells us the sign of the

charge of the carriers.

It is easy to determine the magnitude of Et by balancing the electric force with the

magnetic force:

th = (]UdB — Et = UdB = Vg = E

We know J = nqv, implies n = J/quq = JB/qE,

AV = E;h I=JA
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Thus we can determine the carrier density n from quantities we can measure.
Force on a Current Carrying Wire
Consider a wire carrying current /. If we put the wire in an E field, no force acts on
it because the wire is neutral. On the other hand, if we put it in a B field, there will be
a sideways force on the current and hence on the wire.
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Remember that I points in the direction of positive charge flow.

Let’s be more quantitative about this. Suppose we think of the current as consisting
of a charge \ per unit length moving at velocity v down the wire. (Assume that there is
a charge density —A that isn’t moving so that the wire as a whole is electrically neutral.)

In the time At, a length of charge dl = vAt flows past a point. Thus the amount of
charge AQ that flows past the point is AQ = Adl = AwAt. The current [ is:

AQ  IvAt
= — = = 4
AT A M (4)

Consider a straight section of wire of length ¢ carrying current /. The amount of moving
charge in this section is ¢ = A{. Thus,

F = quBsing = (M)vBsing = &KB sin ¢
I

= [{Bsin¢
In general, we have
ﬁB =Ilx B
where £ is a length vector which points along the wire. |l7\ = length of straight wire

segment. If the wire isn’t straight, we can divide it up into little straight segments each
of length ds. The force on each tiny segment is then

dFg = Ids x B



There is no such thing as an isolated current carrying wire segment. Current coming in

one end must go out the other end.
Torque on a Current Loop

Consider a rectangular loop of wire carrying a current in a magnetic field B. There

will be forces on the loop, but the net force will cancel out (F_:tot =0).
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Fy, = Il x B=1IbBi

Fy = Il x B =1IbB(-%)

F, = —F,

F, = Ifx B =1IaBj

Fy = Il'x B=1IaB(—j)

B = F

Now suppose we tilt the loop by rotating it about the x-axis.

F, = Il x B=1IbBsin(90° — 6)z
1bB cos 0z
F, = —ﬁg — Forces on sides 2 and 4 cancel out



ﬁl and ﬁg want to rotate the loop so that # points along B. (72 is a unit vector normal
(or perpendicular) to the plane of the loop.) F; and F3 produce a torque.
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F, = —-F Fi =10 x B = IaBj
7= FxF

—

7 X Fy + (=) x (= F)
= 2?1 X ﬁ]_

!l
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211 F sin 6
b
= 2(5)(IaB) sin 0
= JIabBsinf
= IABsinf A = ab = area of loop

If the loop were replaced by a coil with N turns the torque would be
T~ = N7 = NIABsin0 (6)
Getting a current loop to turn in a magnetic field is the principle behind electric

motors. The loop keeps turning because the direction of the current is switched every
half cycle. An electric motor is what starts your car.

Magnetic Dipole



We can associate a magnetic dipole moment /i with the current loop. The direction
of ji is normal to the loop (f || 7) given by the right hand rule with the fingers in the
direction of the current. The magnitude of y for a flat loop with N turns is

uw=NIA A = area of loop
Then our previous expression for 7 becomes
T=NIABsinf = yuBsinf

The general vector relation is

T=[xXB (7)
The magnetic potential energy is

U=—-ji-B (8)
The coil aligns itself in the B field so as to minimize its potential energy.
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Currents produce magnetic fields
How are magnetic fields produced? One source is permanent magnets (refrigerator
magnets). Another turns out to be electric currents. The connection between electricity
and magnetism was made in 1819 by Hans Christian Oersted. One day, while teaching

class, he brought a compass near a wire with a current flowing through it. Since the
needle was perpendicular to the wire, nothing happened.
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Later, after class, Oersted decided to try it again, but this time with the wire oriented
parallel to the compass needle.
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The needle turned perpendicular to the wire. When he reversed the current, the com-
pass needle reversed its direction. Oersted had shown that electrical currents produce

magnetic fields.
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The magnetic field near a wire is much larger than the earth’s magnetic field. So we can
use a compass to map out the field of a current carrying wire. Denote the magnetic field
by B. B circles around the wire. Right hand rule: if thumb points in the direction of
current flow, your fingers curl in the direction of the field.

AN
VAVERV

N

B

Biot-Savart Law
Recall that to find the E' produced by a continuous charge distribution ¢, we divide the
charge into little pieces dg. Each piece produces dF of magnitude

| = (1) 9)

dmeq) 12

Similarly, to find the B field produced by a current carrying wire, we divide the wire into
tiny segments IdS. |d5] = length of segment. ds points in the direction of current flow.
Note that I ds is a vector while dgq is a scalar.

Suppose a point P is a distance r from Id5. Then the magnitude of the magnetic
field set up at point P by the current element Ids is

@Idssinﬁ

dB| =
|dB| Adr 72
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o is the permeability constant (or permeability of free space):

T -m
= 4rx 1077 ——
Ho ™ A
T -m
~ 1.26x 1076 ——
% A

1o is the magnetic analog of ¢y5. 6 is the angle between ds and 7. The direction of dB
is given by ds x 7. 7 points from ds to P. Putting this together gives the Biot-Savart
Law:

= Ho Ids x 7
B=(—
d (4%) r3

Let 7= 7/r be a unit vector in the 7 direction. Then

— Ho Ids x 7
dB = (—
()

r2

Recipe for Using the Biot-Savart Law
1. Divide current into tiny pieces Ids where ds points in the direction of current flow.
2. Find direction of the field dB due to Id3 at a distance 7 away: dB || (d3 x 7)

3. Calculate the magnitude |d§\ — Mo Idssing

A 72

4. Integrate over the entire current flow:

10
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You may have to do this by components:

B, — uo/(ld§xf)w

An 72

Mo (Id§'>< 72)3}

B, = —/7
y A7 r2

Mo (Id§'>< f)z

B = Jo [UIEXH):
47 72

Notice that dB falls off as %2 just like dE. Notice also that dB L d3 and dB L 7.

B Due to Long Straight Wire
The simplest application of Biot-Savart is to find the B field produced by a long
straight wire. Notice that our earlier claim of B curling around the wire agrees with
what we got from ds x 7.
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To find the magnitude of | B|, we use
. po [dssin@
Bl=——7—-— 1
aB| = Lo 10 (10)

Notice that dB has the same direction (out of the paper) for every current element
into which the wire can be divided. Thus we can add the magnitudes

B = / dB integrate over whole wire

Note that 72 = s> + 7% and sin@ =r, /r =71, /,/r% + §°

@Idssin@_@ Ids T
4r 2 Am(s2+12) /r? + 52
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Aside: We had to evaluate the integral I = [ ;:7‘15) This is how we did this:

I—/ r,ds _ r,.ds / ds
2+r)F gt aas 53

Let - = tang d(;-) = f—f = sec?¢pd¢ because d (tan ¢) = sec? ¢d¢

I 1 / sec?pde
i) (14 tan2g)?
Usel + tan?¢ = sec?¢

_ sechbd(b 1 rsec’¢do
I = /TL / sec2¢ sec3q5
1 do 1
= R _— = — d
r, J seco H/cosqﬁqb
= —sing
L
1 S

rLy/s?2+r?

So




So a long straight wire produces a B field

I
B=H
27T’/’J_

where r, is the perpendicular distance from the wire. Notice that B gets weaker as you
go farther from the wire. Also B increases linearly with the current strength 1.
Fg on a Current Carrying Wire
If we put a long straight current carrying wire in an external magnetic field B,y the
total magnetic field Emt is given by

— — —
Btot = Bext + Bwire

where éwire is due to the current in the wire. However, the force on the wire is due only
to By because the wire does not exert force on itself. Thus

Fp = I0X Bey

To see why

F=1Ix By =0

note that Ewire on one side of the wire is opposite to that on the other side (e.g. B

-
bottom
—-B wire

top __
wire —
)- So the forces cancel out.

—_—
B bottom

However if the wire was bent, one part of the wire could exert force on the other part.
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Force Between 2 Wires
Rather than considering a bent wire (with complications like bends and corners), let’s
consider 2 parallel wires with currents in them. Then the field éa produced by wire a
will exert a force F},HL on wire b:

ﬁb(—a = ]bg;) X ga (11)

where E, = segment of length ¢, pointing in direction of I,. Similarly wire b exerts a force
on wire a:

Z:%(Jx—b = Iag;. X Bb (12)
Let’s see which way these forces point:
No
Force || -
|aA A I |aA | R |aA 1,=0
— > - -— -
l:a+ b Fbte Fa*t Fb*a
<L>
Let’s calculate Fqb<_a in case 1:
B,
RS P,
d
ﬁb(—a = IbEJXBa E)—Lga
,U'OIa
F a — I E Ba Ba =
be vEp ord
,UOIa
= I/
"ond
_ Holalvly
27d
Notice that the force depends on both I, and I,. Similarly,
IU'OIaIbEa
Folp="2"2 13
b 27d (13)
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The force per unit length is

Fa(—b — ,U/OIa]b
I 27d
Current Loop

We can use the Biot-Savart law to find the magnetic field B a distance z above the
center of a current loop of radius R.

(14)
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B
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We divide the ring into segments ds. ds L 7. So
1o Idssin 90°
dB = —————
47 72
. Mo Ids
 Ar 2
We want the z-component of dB. (By symmetry, B || k)
dB, = dBcosc cosa———i
o o JVRTy 2
_ Mo Ids
= 4, 2 cosa
_ poldsR
A o2y
_ @IRds Y
dr 73
. Mo IR ds
AT (R +2%)3
1 Rd IR
B, = dez—lujif i 3 — Ho 3%d
AT J (R2+422)>  4Am(R2 4+ 22)>



wol (27 R?)
AT (R? + 22)%
pol R?
2(R? + 22)2
B o= _MIE > (B = B,k)
2(R2 + 22)3
puol (T R?)
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mR? = area of loop

If the loop is replaced by a circular coil with N turns of wire, then

poNITR?

g poNITR
2m(R2? + 22)2

Far above the loop (z >> R)

S puoNITR?.
B ———k&
2723
Let’s relate this to the magnetic dipole moment # of the loop. Recall y = NIA,
where A = area of the loop. The direction of i is given by the right hand rule: when
your fingers curl in the direction of the current, your thumb points in the direction of /.

Notice that j points in the same direction as B.

where A = mR?. This is the magnetic field produced by a dipole moment f along the
z-axis. The field lines are like those of a bar magnet with N and S poles.

Note that our expression for B is similar to the electric field £ produced by an electric
dipole p:

- ]_ D
E P

z p—
2meg 28
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Both E and B fall off as 1/23
Ampere’s Law
Recall that in electrostatics, Gauss’ law made it easier to find E if we were given a
charge distribution with symmetry.

€0 %‘ E -da = Genc (15)

Ampere’s law is the magnetic analog of Gauss’ law.

f‘ é -d§ = IU/OIenc (16)
C

This is Ampere’s Law. This tells us that if we encircle a current carrying wire with a
closed loop C, the line integral around C will equal pglene. (dS does not go along the
wire.) The direction of C (clockwise vs. counterclockwise) is given by the same right
hand rule that gives the direction of B: thumb along I, fingers curl in direction of C.
C can be any shape as long as it doesn’t cross itself and it is closed. It is easiest to do
the line integral § B - d5 if B || d5 or if B 1 d5. Thus Ampere’s law allows us to find
B if the current configurations have symmetry. The following current configurations are
commonly evaluated using Ampere’s law:

1. Infinitely straight lines
2. Infinite Planes

3. Infinite Solenoids

4. Toroids (Donuts)

Recipe for Using Ampere’s Law to Find the B Field

1. Determine the direction of B produced by the current by symmetry. If the current
distribution does not have symmetry, don’t use Ampere’s law.

2. Draw Amperian loop surrounding the current. Try to make sides of loop such that
d3|| B or d§ L B on each side.

3. Evaluate line integral ¢ B-ds.
4. Evaluate how much current is enclosed by the Amperian loop: Ieyc.

5. Solve ¢ B-ds= tolene for the magnitude of B. (Direction of B was determined in
step 1.)

Notice that if fenc = 0, then fé -ds = 0. But this doesn’t mean that B = 0. In the
figure B L ds on sides 2 and 4, = [, B-ds= [ B, -ds=0.
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The line integral for 1 and 3 cancel:

B-ds = Blcos(180°) = —B¢
B-ds = Blcos(0°) = Bl
fﬁ-dé’: /é-d§+/§-d§+/§-d§+/§-d§
1 2 3 4
= —B/+0+4+B{+0
= 0

Example: Long Straight Wire Find B a distance r from a long straight _wire
carrying current I. Draw a loop C of radius r around the wire in the direction of B. B
circles around the wire. B = const on the loop C because the radius of C is fixed at r.

ho
\

C

%g-dé':QWTB
c

y{ B-d3s= tolene = 2mrB = polenc
c

Kol
2rr

B

This is the same result that we got using the Biot-Savart law. Notice that this was much
easier than our previous calculation.

Suppose the long straight wire has radius R and carries total current /. Find B both
outside (r > R) and inside (r < R) the wire. Assume the current is spread uniformly
over the cross section of the wire.
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For r > R, the calculation is the same as above and

p = ol
27r

r>R
For r < R (inside), we draw a loop C of radius r. Then

j[é-d§':27rrB
C

In. = (current density)(area inside loop C) = J - 7r?. So J = I /7 R? which implies

I Ir?
Ine = Jnr? = — -mr? = r

mR2 R

fg -ds = ,U'OIenc
Ir?
MOﬁ
po Ir?
2rr R2
polr
2T R?

Notice that B increases linearly with r inside the wire.

B

N\ B~1/r
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B points azimuthally both inside and outside the wire.
Solenoid
A solenoid is a cylindrical coil of wire. We are interested in long straight solenoids
whose length L is much longer than the radius (L >> R). An infinite solenoid with
tightly packed turns of wire has a uniform B field inside the coil along the axis and
B = 0 outside the coil. You can see this by looking at a diagram.
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The field between neighboring wires tends to cancel. Outside the solenoid, the field from
the top (®®) tends to cancel that from the bottom (®®). Inside the top and bottom
add

’
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B#0

B=0 —Z>

We can systematically deduce the direction of B. Let’s use cylindrical coordinates
(r, ¢, 2).

B,: Is there a radial component B,? No. Suppose there were an outward pointing
radial component (B, > 0). Then if we reverse the current, B, would point inward. But
reversing the current is equivalent to turning the solenoid upside down which shouldn’t
change B,. So B, = 0. Another way to see this is to note that B, from adjacent turns
of wire cancel.
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Or consider z = 0, say, and note that the current from £z produce contributions to
B, (z = 0) which tend to cancel.
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B,: What about By? Take an Amperian loop #1 around the cylinder

By = const on this loop. The loop has a radius r.

|

B -ds= B,(277) = ptolone
]2&1 § o(2m7) = po

. By symmetry,

Iene = 0 because the no current pokes through the surface spanned by loop #1.

:>B¢(27T7’):0
:>B¢=0

B, Only B, is left. From the right hand rule, B points along +z inside. (Same use
of right hand rule that you used to get the dipole moment fi.) What is B, outside? We
can use Ampere’s law to prove that B = 0 outside. Draw an Amperian loop outside the

solenoid. I, = 0.

=z




32 1 ds and B4 | d3 because B || 2 and d5 L Z. 31 is constant along side 1; 33 is
constant along side 3. Let’s assume 31 B;Z and B3 Bsz Where B; > 0, B3 > 0; i.e.,
31 and B3 point in the 42 direction. B3 is antiparallel to ds. So 33 d§ = —Bsds = B3dz

since ds = —dZ.
. b d
fB-dg = / Blds—/ Bsds

b d
_ /Bldz-l—/ Badz

b d
_ Bl/dz—i-B?, / dz
a C

=d—c=—¢
Byl — B3t
= (0= B; = B3 = const

But infinitely far away from the solenoid, B = 0 which implies that the constant = 0. So
B, =B;=0—= B = 0 outside the solenoid.

What is B, inside the solenoid? Draw an Amperian loop as shown. If there are N
turns per unit length, then I, = N/I.

=z
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Look at fg -d3. B L d5on sides 2 and 4. B=0 along side 3. So

fé-dg’ - /E-d§+/é-d§+/é-d§+/é-d§
1 2 3 4

b -
= B/ dz (B is constant along 1.)

%B’dé’ = HOIenc

Bt = pugNIY¢
B = pgNI inside the solenoid
B = pgNIz

22



Magnetism in Matter
Electrons can generate magnetic fields in three ways.

1. Currents in conductors.
2. Orbital motion in an atom.
3. Intrinsic “spin” which produces an intrinsic magnetic moment fig.

Electrons orbiting around the nucleus of an atom are like a tiny current loop. As-
sociated with this current loop is a magnetic dipole moment fi,.,. The circular motion
of the electrgns is also associated with an orbital angular momentum I_:orb. It turns out
that /Iorb X Lorb-

N

Morb

Sk

Recall that the magnetic moment produced by a current loop is given by

orb

Morb — IA (18)

® lJ‘orb

The current I ~ 1.6 x 103 A and the area A = 7R? where R ~ 1 A. In most substances
the orbital magnetic moment of one electron in an atom is cancelled by that of another
electron orbiting in the opposite direction. So orbital motion produces very little, if any,
magnetism in materials.

The other way electrons produce magnetism is via their intrinsic angular momentum
or spin. In atoms or ions with many electrons, the electrons fill the orbitals in pairs
with opposite alignments of their spins. As a result each pair has zero magnetic moment.
But an atom with an odd number of electrons has at least one unpaired electron and a
corresponding spin magnetic moment. A substance consisting of these magnetic atoms
can exhibit different types of magnetic behavior.
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Electrons in atomic energy leve
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Perhaps the most well known such behavior is ferromagnetic. Iron, cobalt, nickel,
gadolinium, and dysprosium are ferromagnets. Ferromagnets are what you use to tack
messages to your refrigerator door. In a ferromagnet the magnetic moments of the atoms
tend to align parallel to one another.

A

Ferromagne

In ferromagnets there are microscopic regions called domains within which the moments
are aligned parallel to one another. But a given domain can have its net magnetic moment
pointing in a different direction from some other domain. All these misaligned domains
yield a net magnetic moment of 0. This is why a piece of iron (like a nail) will usually
not be magnetic.
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But if you put the iron in a strong magnetic field, the domains aligned along the field
will grow at the expense of the domains which are not aligned along the field. As a result
the iron will acquire a net magnetization and will become magnetized. Magnetization is
the magnetic moment per unit volume.
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