
LECTURE 19

First and Second Order Phase Transitions
Phase transitions are often associated with ordering. For example the molecules in

water are disordered whereas they are ordered in ice. This is a special case of a liquid–to–
solid phase transition. Bose condensation is another example of a phase transition; the
bosons are not coherent above TC but a macroscopic fraction of them can be described
by a coherent wavefunction ψ below TC . There are 2 basic types of phase transitions:
first order and second order. Water–to–ice (or liquid–to–crystalline solid) is an example
of a first order phase transition. Typically a first order phase transition is associated
with a discontinuity ∆S in the entropy. The entropy of the liquid S` is greater than the
entropy of the solid Ss and ∆S = S` − Ss. The latent heat L is given by

L = T∆S (1)

To understand latent heat, suppose we add heat to a block of ice at a constant rate. Its
temperature increases steadily until we reach 0 C, where the temperature stays put until
the ice is all melted. All the heat we put in at 0 C goes into melting the ice; this heat is
the latent heat of transformation. First order phase transitions are also often associated
with sudden volume changes; ice expands relative to the water it came from. This is
unusual; most solids take up less space than their liquid counterparts.

We often associate an order parameter with a phase transition. In a liquid the atoms
or molecules are disordered in their arrangement, but at the transition, they suddenly
become ordered. Thus a first order phase transition is associated with a discontinous
jump in the order parameter.

The other type of phase transition is a second order phase transition. Bose conden-
sation is an example of a second order phase transition. A second order phase transition
does not have any latent heat associated with it; the entropy is continuous at TC . In a
second order phase transition the order parameter grows continuously from zero as the
temperature drops below TC . For Bose condensation the order parameter is ψ; ψ = 0 for
T > TC and |ψ| grows continuously as T decreases below TC .
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Another example of a second order phase transition is the paramagnetic to ferromag-
netic phase transition. (Ferromagnets are bar magnets and can be found on refrigerator
doors holding up notes.) We have discussed how the electrons in atoms have magnetic
moments associated with them due to their spin and orbital angular momenta. When
the atoms make up a solid, they can give the solid magnetic properties. If the magnetic
moments are not pointing in any particular direction but can be aligned by an external
magnetic field Hext, then the system is paramagnetic with the magnetization M = 0. If
the magnetic moments are lined up and are pointing in the same direction even when
Hext = 0, then the system is ferromagnetic with a net magnetization Mz 6= 0. (I’m
calling ẑ the direction of the magnetization.) A system at high temperatures can be
in the paramagnetic state and can then undergo a second order phase transition into a
ferromagnetic state at some temperature TC . The order parameter is the magnetization
Mz. It increases continuously from zero as T drops below TC . One signature of the
second order phase transition is a susceptibility χ(T ) which diverges at T = TC . Recall
that M = χH. The susceptibility tells us how easy it is for the spins to respond to a
magnetic field. χ(T ) diverges as one approaches TC from high or low temperatures.

As long as we’re on the topic of magnetism, let me just mention one other kind
of magnetic state, and that is the antiferromagnet. In an antiferromagnet the spins
alternate in space: up, down, up, down, etc. The net magnetization is zero but the
staggered magnetization, where we just look at every other spin, say, is not zero. This
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staggered magnetization is the order parameter. Like the ferromagnet, there is a second
order phase transition from a paramagnet to an antiferromagnet. If you could put on a
staggered magnetic field that alternated direction from site to site, you could measure a
staggered susceptibility and this would diverge at TC .

Ferromagnet Antiferromagnet Paramagnet

Broken Symmetry
Reference: P. W. Anderson, Basic Notions of Condensed Matter Physics, Addison–

Wesley (1984), chapter 2.
There is one further concept that is associated with phase transitions and that is the
concept of broken symmetry. Broken symmetry occurs when the ordered ground state
does not have the full symmetry of the Hamiltonian. Recall that the symmetries of a
Hamiltonian are associated with the operators that commute with the Hamiltonian. For
example a homogeneous isotropic liquid has translational invariance; move all the atoms
by the same amount and the liquid looks the same. The Hamiltonian describing this
system is also invariant under translation. But once the system forms a crystal where
the atoms or molecules sit on a periodic lattice, the translational invariance is broken and
the ground state no longer has the full symmetry of the Hamiltonian. The Hamiltonian
doesn’t change; it still has translational symmetry, but the system it describes no longer
has translation symmetry.

We can make this a bit more formal. Recall from that we said that if the Hamil-
tonian has translational symmetry, momentum is a good quantum number. States can
be labelled by any value of the momentum. But in the crystal which is periodic and
has discrete translational symmetry, the eigenstates are labelled by discrete values of
the momentum. We saw an example of this when we solved for the eigenstates of free
particle system with periodic boundary conditions and found that only discrete values of
the momentum were allowed.

Notice that this broken symmetry has a certain rigidity. If you push on one corner of
the crystal, all the other particles move with it in such a way as to maintain their spatial
relation with the corner that you are moving. True broken symmetry is associated with
some type of rigidity. P. W. Anderson calls this generalized rigidity. (Photons in a laser
don’t have rigidity.)

Another example is the paramagnetic to antiferromagnetic transition. The Hamil-
tonian describing the spins and their interactions with one another is invariant under
rotations in spin space. This means that we expect its eigenstates to have good total
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spin quantum numbers S and Sz.

H = J
∑

i>j

~Si · ~Sj (2)

where the exchange constant J > 0. The paramagnet has the symmetry of the Hamilto-
nian. In other words if you rotate all the spins in a paramagnet by the same amount, the
paramagnet will look the same. But if you rotate an antiferromagnet by an arbitrary an-
gle, it looks different. So the antiferromagnet is a broken symmetry state. By this same
argument, a ferromagnet is a broken symmetry state and is often cited as an example of
broken symmetry. But technically speaking, it is not a broken symmetry state because
a ferromagnet is an eigenstate of the Hamiltonian. It can be labelled by its total spin S
and by Sz. On the other hand an antiferromagnet does not have a good spin quantum
number S. The true ground state is a singlet with S = 0.

For the case of Bose condensation, the Bose condensed state is described by a wave-
function or order parameter ψ = |ψ|eiφ. The broken symmetry is gauge symmetry by
which we mean that everywhere in the system the phase is φ. This is what gives the
state macroscopic phase coherence. Note that this value of φ may fluctuate in time, but
at any given time, it is the same everywhere.

When a continuous symmetry such as translation or rotation is broken, low energy
excitations called Goldstone modes result. These low energy excitations are collective
modes that involve perturbations related to the symmetry that was broken. Collective
modes involve correlated motion among a large number of atoms or spins or whatever.
For example, when translational symmetry is broken and a crystal results, small trans-
lations of the atoms back and forth result in lattice vibrations. These vibrations are the
Goldstone modes and the Goldstone bosons are phonons. For an antiferromagnet where
rotational symmetry is broken, the Goldstone modes are spin waves and the Goldstone
bosons are magnons.

Broken symmetry is a deep and far ranging concept that applies to a wide variety
of phenomena. Not only does it apply to phase transitions such as those involving Bose
condensation, superconductivity, magnetism, and crystallization, but it also is important
in understanding the Higgs mechanism in particle physics, and the formation of matter
from energy in the early stages of the universe. Phase transitions have also been proposed
to describe the origin of the universe: some think the big bang was a phase transition
that involved symmetry breaking.

Ginzburg–Landau Free Energy
There is a very useful way to describe second order phase transitions using the

Ginzburg–Landau free energy. Let’s suppose we want to describe a second order phase
transition where the order parameter is denoted by ψ. (We could just as easily use M if
we were describing a magnetic transition.) We can write down a free energy in terms of
ψ to describe the thermodynamics of the transition. Near the transition |ψ| is small, so
we can expand the free energy functional F in powers of |ψ|. We stop at fourth order.
We only have even powers of |ψ| because F must be invariant under the transformation
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ψ → ψeis where s is a constant phase factor (or under the transformation Mz → −Mz).
Besides a cubic term |ψ|3 would give a first order transition. So we can write

F = Fn +
∫

[

h̄2

2m∗

|∇ψ|2 + a|ψ|2 +
1

2
b|ψ|4

]

dV (3)

where V is the volume and Fn is the free energy of the normal state or high temperature
state, e.g., the normal metallic state for a superconductor, the normal liquid helium state,
or the paramagnetic state. a and b are coefficients. We have included a gradient term
|∇ψ|2. This tells us that the energy of the system increases if the order parameter varies in
space. If it varies slowly so that there are only long wavelength fluctuations, then we can
just keep the lowest order gradient terms. Let’s assume the order parameter is uniform
in space and get rid of this term entirely. This is fine for an isotropic homogeneous
superconductor with no external field. The energy is lower that way and it makes life
simpler. Now we just have a quartic polynomial in |ψ|. Because |ψ| is independent of
coordinates, we can pull it out of the volume integral:

∫

|ψ|2dV = |ψ|2V . Then we have

F = Fn + aV |ψ|2 +
1

2
bV |ψ|4 (4)

The coefficient a is a function of temperature

a = α(T − TC) α > 0 (5)

Thus a > 0 for T > TC and a < 0 for T < TC .

n nnF − F
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F − FF − F
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Τ > Τ
C

Ψ
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C

Ψ

(The ψ axis should really be the complex ψ plane if ψ is the complex order parameter
for a superfluid or a superconductor. If we had a complex ψ plane, then below TC , F (ψ)
would have the shape of a Mexican hat or the bottom of a wine bottle.) For T > TC , the
equilibrium value of |ψ| = 0. For T < TC , the equilibrium value of |ψ|2 is given by

∂F

∂(|ψ|2)
= 0 =⇒ |ψ|2 = −

a

b
=
α(TC − T )

b
T < TC (6)

For a superconductor |ψ|2 represents the density of superconducting electrons; for a
superfluid or Bose condensate, it represents the condensate fraction. Notice that |ψ|2
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goes to zero linearly as the temperature approaches TC from below. Substituting (6)
back into equation (4) yields the value of the free energy Fs in the ordered state. The
difference in the free energies of the normal and ordered states is

Fs − Fn = −
a2V

2b
= −V

(

α2

2b

)

(TC − T )2 (7)

Using CV = −T
(

∂2F
∂T 2

)

V
, we find that at T = TC there is a jump in the specific heat given

by

Cs − Cn = V
α2TC

b
(8)
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