
LECTURE 17

Ferromagnetism
(Refs.: Sections 10.6-10.7 of Reif; Book by J. S. Smart, Effective Field Theories of

Magnetism)

Consider a solid consisting of N identical atoms arranged in a regular lattice. Each
atom has a net electronic spin S and a magnetic moment ~µ that is related to the spin by

~µ = gµoS (1)

where g is the g-factor and µo is the Bohr magneton. In the presence of an externally
applied magnetic field Ho along the z direction, the Hamiltonian Ho is given by

Ho = −gµo
N
∑

j=1

Sj ·Ho = −gµoHo

N
∑

j=1

Sjz (2)

In addition, each atom can interact with its neighbors. In the past we ignored inter-
actions and assumed that the spins were noninteracting. This is ok as long as kBT À the
interaction energy. In this case, well-localized spins should obey Curie’s law, χ ∼ 1/T ,
far from saturation and the magnetization M should vanish as Ho → 0. This is how a
paramagnet behaves.

However, if the interaction between spins
>∼ kBT , magnetic ordering may occur. We

can think of this as being due to an effective magnetic field produced at a given site
by its neighbors. For example, suppose a given electron is ↑. If it produces a field
at a neighboring site parallel to itself, then the neighbor will also tend to be polarized
↑: in fact, we would expect all ↑ spins or all ↓ spins in the ground state. This is a
ferromagnet – it has “spontaneous magnetization” even when Ho = 0. Ferromagnets are
bar magnets and stick to your refrigerator door. If, on the other hand, the field produced
is antiparallel to the spin, we expect to get ↑↓↑↓ .... This is an antiferromagnet and has
zero net magnetization.

All forms of magnetic ordering disappear as the substance is heated: typical transition
temperatures are of order 100 to 1000 K. The temperature at which the spontaneous
magnetization disappears is called the Curie temperature (TC) for a ferromagnet. The
ordering temperature for an antiferromagnet (AF) is called the Néel temperature (TN).

Origin of the Ordering Field: Our first guess of the dominant magnetic interac-
tions would be magnetic dipole-dipole interactions. But the strength of nearest neighbor
dipole-dipole interactions is of order 1 K which is much smaller than the transition tem-
perature (TC) for a ferromagnet. (See Reif page 429 for more details of this estimate.)
So dipolar interactions cannot account for magnetic ordering.

The origin of the ordering field is a quantum mechanical exchange effect. The deriva-
tion is given in the appendix and you will see it in the second quarter of quantum
mechanics. Let me try to explain the physics behind the exchange effect. Basically the
Coulomb interaction between two spins depends on whether the spins form a singlet



or a triplet. A triplet state is antisymmetric in real space while the singlet state has
a symmetric wavefunction in real space. So the electrons stay out of each others way
more when they are in the triplet state. As a result, the Coulomb interaction between
two electrons is less when they are in a triplet state than when they are in a singlet
state. So the interaction energy depends on the relative orientations of the spins. This
can be generalized so the spins don’t have to belong to electrons and the spins need not
be spin-1/2. This interaction between spins is called the exchange interaction and the
Hamiltonian can be written as

H = −2
∑

i>j

JijSi · Sj (3)

This is known as the Heisenberg Hamiltonian. We put i > j in the sum to prevent
double counting. Jij is called an exchange constant. Since it depends on the overlap of
wavefunctions, it falls off rapidly as the distance between the spins increases. Often Jij
is taken to be non-zero only between nearest neighbor spins. If we take Jij = J , then

H = −2J
∑

i>j

Si · Sj (4)

Notice that if J > 0, then the spins lower their energy by aligning parallel to each other.
If J < 0, the spins are anti-parallel in their lowest energy spin configuration. (In a spin
glass, Jij is a random number that is different for each pair i and j.)

The spins need not have S = 1/2. For example, if there is both spin and orbital
angular momentum (S and L), then Ji = Li + Si is the relevant “spin” vector. Ji is the
total angular momentum of the ith atom.

A simpler Hamiltonian can be obtained by just considering the z components of the
spins. This is called the Ising model.

H = −2J
∑

i>j

SizSjz (5)

For S = 1/2, Sz can take only 2 values: +1/2 or −1/2.
Magnetic systems are not only important in their own right, but also because they

are simple examples of interacting systems and can represent other types of systems, e.g.,
a system of neurons.

Weiss Mean Field (or Molecular Field) Theory of Ferromagnetism
This is a prototype for mean field theories and second order phase transitions. In

1907 Pierre Weiss proposed an effective field approximation in which he considered only
one magnetic atom and replaced its interaction with the remainder of the crystal by
an effective magnetic field Heff . We can extract the single atom Hamiltonian from the
Heisenberg Hamiltonian:

H1 = −2Si ·
∑

j

JijSj (6)
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We now wish to replace the interactions with other spins by an effective magnetic field
Heff so that H1 has the form

H1 = −~µi ·Heff = −gµBSi ·Heff (7)

where

Heff =
2

gµB

∑

j

JijSj (8)

In the spirit of the Weiss approximation, we then assume that each Sj can be replaced
by its average value 〈Sj〉 = 〈S〉

Heff =
2〈S〉
gµB





∑

j

Jij



 (9)

By assumption, all magnetic atoms are identical and equivalent. This implies that 〈S〉 is
related to the magnetization of the crystal by

M = ngµB〈S〉 (10)

where n is the number of spins per unit volume.

Heff =
2

ng2µ2
B





∑

j

Jij



M

= λM (11)

where λ is the Weiss molecular field coefficient:

λ =
2

ng2µ2
B





∑

j

Jij



 (12)

If there are only nearest-neighbor interactions,
∑

j Jij = zJ where z is the number of
nearest neighbors, i.e., the coordination number. Then

λ =
2zJ

ng2µ2
B

(13)

If there is an external field Hext, then the total field acting on the ith spin is

H = Heff + Hext (14)

Since M is a paramagnetic function of H:

M = f (Heff + Hext) (15)

where
Heff = λM (16)

We can solve these two equations self-consistently for M. Let’s do some simple examples
of this.
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1. Suppose that Hext is small, and let us assume that M and hence Heff will also be
small. Then assuming that M ‖ Hext ‖ Heff ‖ ẑ

M = χCH where χC = Curie susceptibility

= χC (Hext +Heff )

= χCHext + χCλM (17)

Solving for M yields

M =
χC

1− λχC
Hext (18)

Since χ = ∂M/∂Hext, we get

χ =
χC

1− λχC
(19)

Putting χC = C/T , where C is the Curie constant, gives the Curie-Weiss Law:

χ(T ) =
C

T − λC =
C

T − TC
(20)

where TC = λC. This reduces to the Curie law χ ∼= C/T for T À TC , but as
we approach TC from above, the susceptibility diverges. This indicates that at the
transition temperature (T = TC), the system can acquire a spontaneous magneti-
zation even in the absence of an external field, i.e., it becomes ferromagnetic. If we
plug in our expressions for λ and C:

λ =
2zJ

ng2µ2
B

C =
n (gµB)

2 S(S + 1)

3kB
(21)

(The expression for C is from Reif Eq. (7.8.22). We will derive it later in this
lecture.) We obtain

TC = λC =
2zJS(S + 1)

3kB
(22)

where TC is the Curie temperature. This is reasonable since the energy of a given
spin S in the field of its neighbors is ∼ zJS2. Notice that TC is proportional to the
exhange energy J and to the number of neighbors z.

2. Below TC , or in high fields above TC , we can no longer use the Curie approximation
M = χCH. Rather we must use the full nonlinear expression which leads to the
Brillouin function. (For S = 1/2, Brillouin function reduces to tanh.) The one-
atom Hamiltonian is (again assuming that Hext, Heff , and M to be along the
z−axis)

H1 = −gµBSzH H = Hext +Heff (23)
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and has eigenvalues

Em = −gµBmH m = S, S − 1, ...,−S (24)

The partition function is

Z =
∑

m

e−Em/kBT

=
S
∑

m=−S

egµBmH/kBT

=
S
∑

m=−S

emx/S x =
gµBSH

kBT
(dimensionless)

=
sinh

(

2S+1

2S
x
)

sinh
(

1

2S
x
) (25)

The magnetization is

M = n〈µz〉
= ngµB〈Sz〉

=
ngµB

∑S
m=−Sme

−Em/kBT

Z(x)

=
ngµB
Z

S
∑

m=−S

memx/S

= ngµBS
∂ lnZ

∂x
(26)

Using lnZ = ln
[

sinh
(

2S+1

2S
x
)]

− ln
[

sinh
(

x
2S

)]

, we get

M = ngµBSBS(x) (27)

where the Brillouin function

BS(x) =
2S + 1

2S
coth

(

2S + 1

2S
x
)

− 1

2S
coth

(

x

2S

)

(28)

For S = 1/2,
B1/2(x) = tanhx (29)

If we define a dimensionless field h = gµBH/kBT , then

M = ngµBSBS(hS) (30)
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Aside: Let us take a moment to derive the expression for the Curie constant C in
Eq. (21). At high temperatures or small fields, hS ¿ 1. For x¿ 1

BS(x) ≈
S + 1

3S
x for x¿ 1 (31)

Plugging this into Eq. (30) yields

M =
1

3
ngµBhS(S + 1) (32)

Plugging in h = gµBH/kBT gives

M =
ng2µ2

BS(S + 1)

3kBT
H

= χCH (33)

where

χC =
C

T
and C =

n (gµB)
2 S(S + 1)

3kB
(34)

This is where Eq. (21) came from.

Now back to mean field theory. Eq. (30) is a self-consistent equation forM because
H = Hext + λM . To solve for M , some numerical or graphical method of solution
must be employed. The graphical procedure of Weiss is probably the simplest
method. To use this, rewrite the equation forM in terms of a reduced magnetization
σ:

σ =
M

ngµBS
= BS(hS) (35)

For S = 1/2,
σ = tanh(hS) (36)

This gives one curve. The other curve comes from

hS = hextS + heffS =
gµBS

kBT
(Hext +Heff )

Heff = λM = λngµBSσ =
2zJ

gµB
Sσ

(

λ =
2zJ

ng2µ2
B

)

hS =
gµBS

kBT
Hext +

2zJS2

kBT
σ

σ =
kBT

2zJS2
hS − gµB

2zJS
Hext

= D · hS + A (37)

This gives a straight line for σ versus hS. The intersection gives a self-consistent
solution for σ and hence M .
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σ =tanh(hS)

hS

σ

σ =DhS + A

The most important result of the Weiss theory is that when Hext = 0 and the
straight line passes through the origin, there is still a non-zero solution for σ, i.e., a
spontaneous magnetization is predicted. The general behavior of the spontaneous
magnetization can be inferred without extensive calculations. The slope of the
straight line is proportional to T (D ∝ T ), and rotating the line about the origin
corresponds to changing the temperature. When T → 0, σ → 1, and the material
becomes completely magnetized. As T is increased, the spontaneous magnetization
is reduced and finally vanishes when the slope of the line is equal to the initial slope
of the Brillouin function. This occurs at the Curie temperature TC that we found
earlier.
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hS

σ

Spontaneous
M

ext
H      = 0 = A

We can solve for TC by matching the slopes at x = 0 of the Brillouin function and
the straight line:

BS(x) ≈
S + 1

3S
x for x¿ 1 (38)

The straight line at small x is given by

BS(x = hS) = σ =
kBT

2zJS2
x if Hext = 0 and x = hS (39)
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Matching the slopes at T = TC yields

kBTC
2zJS2

=
S + 1

3S

TC =
2zJS(S + 1)

3kB
(40)

which is what we got before. We can use this to write a special equation of state
for the spontaneous magnetization. For Hext = 0,

σ =
kBT

2zJS2
hS (41)

Solving for hS yields

hS =
2zJS2σ

kBT

=
3S

(S + 1)

TC
T
σ (42)

So at Hext = 0, σ = BS(hS) becomes

σ = BS

(

3S

S + 1

σ

τ

)

(43)

where τ = T/TC .

Temperature dependence of the magnetization:

T ∼ 0 Mean field theory predicts

σ ' 1− 1

S
exp

(

− 3

S + 1

TC
T

)

+ ... (44)

Experiment is closer to spin wave theory:

σ = 1− AT 3/2 − ... (45)

For T ∼ T−
C

σ ∼
(

TC − T
TC

)1/2

(46)

from mean field theory. In general one writes

M ∼ σ ∼
(

TC − T
TC

)β

(47)

where β is a critical exponent. Experiment finds β ∼ 1/3.
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τ

σ

0 1

S =

S = 1/2
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Appendix: Derivation of Quantum Mechanical Exchange
The origin of the ordering field is a quantum mechanical exchange effect. The simplest

example of the exchange effect can be seen in the quantum mechanics of a system of 2
electrons. The Hamiltonian for the pair is

H = H1 +H2 +
e2

r12
= Ho +

e2

r12
(48)

where r12 = |r1 − r2|, and H1 and H2 are the Hamiltonians of electron 1 and electron 2,
respectively. The electrons are either in a singlet state or a triplet state:

ψS =
1√
2
[φi(1)φj(2) + φi(2)φj(1)]χo

ψT =
1√
2
[φi(1)φj(2)− φi(2)φj(1)]χ1 (49)

where the singlet spin wavefunction (S = 0) is

χo =
1√
2
[↑↓ − ↓↑] (50)

and the triplet spin wavefunction (S = 1) is

χ1 =











↑↑ Sz = 1
1√
2
[↑↓ + ↓↑] Sz = 0

↓↓ Sz = −1
(51)

Without the Coulomb interaction, the singlet and triplet are degenerate (have equal
energy):

HoψT,S = Eo
T,SψT,S (52)

where Eo
T = Eo

S = Ei+Ej. If we include the Coulomb interaction e2/r12 using first order
perturbation theory, then

ES = Eo + 〈ψS |
e2

r12
| ψS〉 = Eo + Cij + Jij (53)

ET = Eo + 〈ψT |
e2

r12
| ψT 〉 = Eo + Cij − Jij (54)
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where

Cij =
∫

φ∗i (1)φ
∗
j(2)

e2

r12
φi(1)φj(2)d

3r + (i↔ j) (55)

Jij =
∫

φ∗i (1)φ
∗
j(2)

e2

r12
φi(2)φj(1)d

3r + (i↔ j) (56)

Cij is the average Coulomb interaction between 2 electrons in states i and j. Jij is the
exchange energy of 2 electrons in states i and j. Thus the singlet and triplet energies are
now different; whether the singlet state or the triplet state has the lower energy and is
the ground state depends on the sign of Jij. In this particular case, Jij is positive and
the triplet has lower energy because the antisymmetric spatial wavefunction weakens the
Coulomb repulsion. In more general cases, e2/r12 is replaced by V (r1, r2), and Jij can
be either positive or negative.

The exchange energy can be rewritten in terms of a spin exchange operator

P σ =
1

2
(1 + ~σ1 · ~σ2) (57)

which has the property
P σχms

S (τ1, τ2) = χms

S (τ2, τ1) (58)

where χms

S (τ1, τ2) is the spin wavefunction of 2 particles with spin coordinates τ1 and τ2.
To prove this, note that for S = S1 + S2

S2 = S2
1 + S2

2 + 2S1 · S2 (59)

S1 · S2 =
1

2

[

S2 − S2
1 − S2

2

]

(60)

Since S = ~σ/2 and S1 = S2 = 1/2, S2
1 = S1 (S1 + 1) = 3/4. So

1

4
~σ1 · ~σ2 =

1

2

[

S(S + 1)− 3

2

]

~σ1 · ~σ2 = 2
[

S(S + 1)− 3

2

]

=

{

−3 for S = 0
1 for S = 1

(61)

So

P σχms

S=1 (τ1, τ2) =
1

2
[1 + ~σ1 · ~σ2]χ

ms

S=1 (τ1, τ2)

= χms

1 (τ1, τ2)

= χms

1 (τ2, τ1) (62)

and

P σχms=0
S=0 (τ1, τ2) =

1

2
[1− 3]χms=0

S=0 (τ1, τ2)

= −χ0
0 (τ1, τ2)

= χ0
0 (τ2, τ1) (63)
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Therefore,
P σχms

S (τ1, τ2) = χms

S (τ2, τ1) (64)

Thus we can write

E = Eo + Cij − Jij〈χms

S | P σ | χms

S 〉

= Eo + Cij − Jij
[

1

2
(1 + 〈~σ1 · ~σ2〉)

]

=

{

ES if S = 0
ET if S = 1

(65)

This implies that we can write the Hamiltonian in the form

H = const− 1

2
Jij~σ1 · ~σ2 (66)

We now make a rather bold leap of faith and assume that we can write a similar Hamil-
tonian for a system with many electrons.

H = −1

2

∑

i>j

Jij~σi · ~σj (67)

This is the Heisenberg Hamiltonian and Jij are called the exchange constants. Usually
one writes

H = −2
∑

i>j

JijSi · Sj (68)

where the factor of 4 is from (S = σ/2)2.
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