PROBLEM SET 9

Reading: Handout on NMR

1. Thermodynamics of a Simple System of Spin-1/2 Particles

Consider a solid with N weakly interacting spin-1/2 particles, each with magnetic moment of magnitude μ_B . The solid is in a uniform external magnetic field \vec{H} pointing along the z-axis. The solid is in contact with a heat bath at temperature T. The Hamiltonian \mathcal{H} is

$$\mathcal{H} = -\vec{\mu} \cdot \vec{H} \tag{1}$$

where $\vec{\mu}$ is the magnetic moment. Find, as a function of temperature,

- (a) the magnetization M
- (b) the susceptibility χ . Plot or sketch the susceptibility vs. T. (This is called the Curie susceptibility.)
- (c) the specific heat at constant volume C_V . Plot or sketch the C_V vs. T. (This is called the Schottky specific heat.)