due 2:00 pm Thursday May 26

PROBLEM SET 8

Reading: Handout from Feynman's Statistical Mechanics

1. BCS Theory (T=0) Starting from the variational wavefunction

$$\psi = \prod_{\vec{k}} \left(u_{\vec{k}} |11\rangle_{\vec{k}} + v_{\vec{k}} |00\rangle_{\vec{k}} \right) \tag{1}$$

and the BCS Hamiltonian

$$H = \sum_{\vec{k}} \varepsilon_{\vec{k}} a_{\vec{k}}^{\dagger} a_{\vec{k}} + \sum_{\vec{k}_1' \vec{k}_2'; \vec{k}_1 \vec{k}_2} V_{\vec{k}_1' \vec{k}_2'; \vec{k}_1 \vec{k}_2} a_{\vec{k}_1'}^{\dagger} a_{\vec{k}_2'}^{\dagger} a_{\vec{k}_1} a_{\vec{k}_2}$$
(2)

show that

$$u_{\vec{k}}^2 = \frac{1}{2} \left(1 - \frac{\varepsilon_{\vec{k}}}{E_{\vec{k}}} \right) \tag{3}$$

$$v_{\vec{k}}^2 = \frac{1}{2} \left(1 + \frac{\varepsilon_{\vec{k}}}{E_{\vec{i}}} \right) \tag{4}$$

where $E_{\vec{k}} = \varepsilon_{\vec{k}}^2 + \Delta_{\vec{k}}^2$ and $\Delta_{\vec{k}} = -\sum_{\vec{k'}} V_{\vec{k}\vec{k'}} u_{\vec{k'}} v_{\vec{k'}} > 0$. (You should work through the algebra.)

2. Find the self-consistent gap equation at T=0:

$$\Delta_{\vec{k}} = -\sum_{\vec{k}'} V_{\vec{k}\vec{k}'} \frac{\Delta_{\vec{k}'}}{2\sqrt{\varepsilon_{\vec{k}'}^2 + \Delta_{\vec{k}'}^2}} \tag{5}$$

Use the BCS approximation $V_{\vec{k}\vec{k}'} = -V < 0$ for $\left| \varepsilon_{\vec{k}} \right| < \hbar \omega_o$ to obtain

$$\Delta = \frac{\hbar\omega_o}{\sinh\left(\frac{1}{N(0)V}\right)} \tag{6}$$

where V > 0 and N(0) is the density of states at the Fermi energy.