PROBLEM SET 4

1. (20 pts) In the Weiss (mean-field) theory of ferromagnetism the Gibbs free energy (G = E(M) - HM - TS), where H is the externally applied magnetic field, M is the magnetization, E is the internal energy, and S is the entropy) has the form

$$G = G_o(T) + a(T)M^2 + b(T)M^4 + O(M^6) - MH$$
(1)

where $G_o(T)$ is independent of M, and where the coefficient b(T) is a slowly varying function of T but a(T) is of the form $a_o(T - T_C)$, T_C being the critical temperature in Weiss theory. Assume that T is close to T_C and that M is small. Using the fact that in thermal equilibrium M will take the value which minimizes G, find (a) the equilibrium value of M for H = 0, for $T > T_C$ and $T < T_C$; (b) the form of M at T_C as a function of H; (c) the zero-field differential susceptibility $\chi = (\partial M/\partial H)_{T,H=0}$ for $T > T_C$ and $T < T_C$; and (d) the discontinuity in the specific heat at constant H $(C_H = -T(\partial^2 G/\partial T^2)_H)$ at the point $T = T_C$ and H = 0. In other words find the difference between the limits of $C_H(T, H = 0)$ as $T \to T_C$ from above and from below.