Lecture 2

Drude Theory of Thermal Conductivity

The thermal conductivity k is defined as the proportionality constant in Fourier’s law:
.TQ = —kVT

where Jo = heat current = heat transported across a unit area per unit time.

In Drude’s model, electrons transport heat because the electrons thermalized at the
“local” temperature of the last collision. (Assume thermalization at each collision.) Thus,
the electrons leaving the hotter regions carry more energy. Let’s derive Fourier’s law and
derive an expression for k. We will use the same approach that we used for deriving
0y Look at %‘ . There are 2 contributions - diffusion and collisions (which knock

total
electrons out of the right direction):

dy. dj
_ (ﬁ) + (ﬁ)
total dt diffusion dt collision

? Suppose the system has a temperature gradient but no collisions

—

djg

dt

—

What is (%)

diffusion
(save those for the other term). Consider the electrons which cross the plane z =0 at a
time ¢ after the start of the operation. An electron with velocity ¢ will have come from
a point 7 = —uit away and will therefore have the average energy appropriate for that
point, i.e., (7). The extra energy will be

. . oe\ . de
55i—ri-Vs—n-VT(a—T>— tv; VT(d—T>

The “extra” energy current is

Jo(t)

de
= Y wdei =t G(H - VT) (o
diffusion ;U ) ;,U (U ) (dT>
d.TQ de RN
(%) . = i) 09D
diffusion i
Since the velocity distribution is approximately isotropic (nothing makes the electrons

go in the VT direction), the energy diffusion is along V7. Cg—f has a component only
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along VT and we can replace the v;’s with %F This gives

dTo dE\ 1
=9 =— (=) zvPvr
( dt )diﬁusion <dT> 3U

where the energy per unit volume E = ne, and ¢ is the energy per particle.
Collisions Now put in collisions. We assume that the electrons thermalize at every
collision. Thus the extra heat current carried by an electron is annihilated at every

collision. Jo = )" 7;d¢; is also lost and we can simply write

7
(@) __Jo
dt collision T

dig\ _ _(dE
dt total dr
dJ

In steady state, (d—?)toml = 0. Using ¢, = (%+)| gives the standard Kinetic Theory

Thus

of Gases result:

To the extent that v27 = vl, |k = L¢, v/l

Wiedemann-Franz Law

It is an empirical fact that

T = constant that is nearly the same in all metals
o

~ 2-10"%watt — ohm/K?

(See Table 1.6 in AM). (k/oT) is called the Lorenz number. Can the Drude theory

explain this? We have
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Thus

k1 chmT 1 cq,mﬁ (%)
oT 3 ne2rT 3 neT

Now if one uses a simple Kinetic Theory of Gases picture for a monatomic gas:

1 — 3 3

imv2 = ikBT and ¢, = inkB
k _ 3 (kg)?

= ET‘?(?)

This is 1.11 x 1078 W]g—QQ, i.e., almost exactly half the experimental value. We will see
later that Eq. (*) is in fact approximately right: it is the evaluation of ¢, and mv? that
is wrong. Fortuitously, the mistakes cancel except for a factor of 2. Incidentally, there
was no evidence in Drude’s time for an electronic specific heat of %nkB. (%nk g 1s a lot of

specific heat.) So it was puzzling as to why the Lorenz number came out correctly when

it appeared that there was no c¢.; at room temperature.

Seebeck Effect - Thermopower

E///

T <ot
The fact that higher energy electrons move faster means that setting up a temperature
gradient would give rise to an electric current. So, if we could set up a temperature
gradient on a closed circuit, a current would flow up the gradient (since electrons are
negatively charged). On an open circuit, the flow gives rise to a build-up of charge at
the ends, and a steady state is obtained when the field E produced is sufficient to cancel

the drift. Hence we expect
E=QVT
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where the thermopower () should be < 0.
Let’s calculate ¢ in the Drude model.

Strategy: In steady state

dy dJ. dJ;
al  _de 2] B
dt total dt diffusion dt field
Diffusion
. \"
cold hot
| : > X
low v 'r=-yt highv
x=0
vVv
vT

Suppose the gradient is along the z-direction. Consider the electrons crossing the
x = 0 plane a time ¢ after the start of the operation. An electron with velocity
will come from a point ¥ = —ut away and will have a velocity appropriate to 7. Let

Vug|| VT || + Z. The excess velocity at z = 0 for the z-component is

1 1 _—
(SU;U = —t{vU- V’U;c = _tvwvvx = _itvvi = —étV’UQ

1_— dlo j R— 1 o2
— ==Vl (= =+-neVv? = +-ne—VT
5 Vv <8t)diﬁ +6ne v +6neaTV

where we used = —newv. Jg is the electric current due to the thermal gradient.
E-field current
Recall

—

( @' ) . ne’E
ot field m

Steady-State: (Heat current cancels E-field current)
dy dy
dt dt

_ 4o

=0
dt

+ =
E

diff

tot
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where

Q=g rim?) = - L4

In the Kinetic Theory of Gases,

3 kg ( 100 x too >

v — = k = = —_—— ~
¢ 9B @ 2e large for expt.

Quantum Theory of Electrons in Metals

(“Free Electrons; Sommerfeld”)

(AM, Ch 2)

Now let’s put QM into the model.

The most important effect of putting quantum mechanics into the theory of metals
is the result of treating electrons as fermions with Fermi-Dirac statistics, rather than as
a classical gas of particles obeying the Kinetic Theory of Gases. But let’s start at the
beginning.

When electrons are treated quantum mechanically, 2 things change: (a) possible states

are quantized; (b) particles are indistinguishable.

Consider non-interacting electrons moving (freely) in a constant potential which we take
to be zero. Schroedinger’s equation in 1D is

7 &y,

2m dz?

= 5n¢n

What boundary conditions do we use? (It doesn’t matter all that much because the bulk

properties aren’t really affected by what goes on at the surface.)
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a) Realistic, i.e., 9, finite outside the metal but decaying exponentially (— 0 as z —
Realistic, i finit tside th tal but d ing tiall 0

oo). This is practically never used for bulk calculations since 7gecqy ~ atomic

dimensions.
(b) Box: Standing Wave Solutions Y, = 0 at walls
, 2232
Un(z) = %sm (_nzx) ; En = 775;;{% n > 0.

We’'re interested in transport - want traveling waves.

(c) Periodic: ¥, (x + L) = 1, (z)

Now traveling wave solutions are allowed.

Ya(@) = \Eek

2

kn=" n20

g, = Pk _ B (2nm)®
2m 2m \ L

It is easy to generalize this to 3D. Consider a box with sides L, L,, L,: Schroedinger’s

equation becomes

W a W (PP P O _
oy Un = (8332 * 0y? * 022 ) = En¥n

2m 2m

For periodic b.c.’s, the solution is a product wavefunction

Un(x,y,2) = %(exp ikyx)(exp tkyy)(expik,2)

|
— _ez T
VV
21,2
B, - hek
2m
with
2n,m 2n, T 2n,m
k, = h k, = —Y k, = z
L, Y L, L,

The momentum carried in the plane wave state is p' = hik and the velocity v = %

Each state is characterized by k and by the spin ¢ along some chosen axis. There are 2
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different states for each allowed value of k. Note that the probability density |1, (7)|? is
uniform in space.

Density of States
Suppose we are interested in some property of the one-electron states, such as the total
average number of electrons in them. We sum over the states

kw — 2nm

sum over allowed k’s
N= E Nko
= T , etc.
ko

where ny, is the number of electrons in state k£ with spin . Assume that ny, is a rather

smoothly varying function of k. This allows us to transform the sum into an integral.

ano — Z / d*k gy o(K)
ko g

¢(k) is the density of states per unit volume of k-space. What is ¢ (k)? k, = 2£m implies

that the density of allowed k, values along the k,-axis is 271’}.[/3; = g—w

Similar arguments

for k, and k, lead to

~ L, L,L, v _ . -
(k) = P @ density of states of one spin in k-space

-

Note that this is independent of the ratio of L, L,, and L,. In fact, ¢(k) is independent
of the sample shape in the limit V' — oo, except for the lowest few states.

If spin is included, put in an extra factor of 2. Thus
d3k 2V 3
Z Nkg — ZV/ —(2ﬁ)3nka = n)? /d kny
ko g
if ng, is independent of o. In general for any dimension d

2V, J
Z—>(2W)d/dk

-

ko

where Vj is the d-dimensional volume.
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Density of States Per Unit Energy

Most of the properties of the electron states are governed by energy, and sometimes,

direction of propagation. So it is convenient to write

dQ
/d?’k—)/dQ/dek:/EAvr/dek

If the property we are considering does not depend on angle, [ %% =1 and we are left
with 4n [ k*dk.
Often it is more convenient to integrate over energy. Since ¢ = £(|k|) depends only

on the magnitude of k, Ae = (g_]f;)Ak

/d3k —)47r/k2dk:47r/k2%de

To summarize, for quantities which do not depend on angle or spin, we have

S (22_;/)347r/k2%d55/g(€)d5

-

where g(e) = (22;/)3 4rk? % = Ccii_? is the number of states in the interval Ae. It is called

the density of states. This formula is valid in 3D.

27.2 2
For a free electron gas, ¢(k) = %, Eii_lf: = %

For e <0, g(¢) = 0. Note g(e) xx V.

a(e)
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Fermi-Dirac Statistics

Electrons are fermions, hence the total wavefunction is antisymmetric. There can be
no more than one electron per state |ko). At T = 0, the ground state is obtained by
filling up the lowest possible energy states (assuming a fixed number of electrons). In
this way, we fill up a sphere in k-space. The radius of the sphere is fixed by the condition

N = Z nge = total number of occupied states
ko

Call the radius of the sphere kr. Then

4 oV Vi
N=_mkd. 2 =
37 (on)3 T 32

Thus the radius of the filled sphere is given by

k%Z%'?)ﬂ'Q

kr is called the Fermi wavevector. (krp = %) The filled sphere is called the Fermi

sphere. Fermi momentum = pr = hkgr. The Fermi energy

2/3
c :@:E 371-25 !
F=om ™ om 1%

Fermi velocity = vp = % Note that all these depend only on the density N/V.

Typical values: kp ~ 108cm™' (~ 1A71), vp ~ 108 cm/sec (< 0.01c), ep ~ a few
eV ~ atomic energies which is no coincidence. We can also define a Fermi temperature
Tp = 2—1;. Tp ~ 10* — 10°K. (Note T' < T for all temperatures where substance is a
solid or a liquid.)

Ground State Energy and Bulk Modulus of Electron Gas

EF
The total number of electrons N = ) np = J g(e)de. We could check our expression
L 0

ko
for g(e) by plugging it in to see if we get N back. The total energy is

EF

E = Zeknk(, = /eg(a)de
ko

0
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Now g(g) = Ae'/? (It won’t matter what A is.)

2 2
= N = gAg?l’w/Z and FE = 5A55F/2.

Thus % = %EF (no dependence on A)
E

: _ 3
(Contrast w/ classical gas & = 5kT)

Pressure: Note 5 is proportional to (%)2/3, i.e., it depends on V. If V is changed, the

electron gas should exert a pressure. At 7' = 0,
p—_ (92} _2E_2
owv)y 3V 5

Aside: Dimensions or units dictate —(0F/0V )y = 2E/3V:

N\ 2/3
er k%~n2/3”(v)

dE 2 .
OE 2 AN2By /8
dv 3 v

_ 2E

3V

where A is a constant. The inverse compressibility (or bulk modulus B) is defined as

—V(g{;) (At T = 0, the derivative is taken with N = const.) Since

EF /3 3P

5
LT xVd B=-V—=2p
V > ’ 3

P
x v

Using P = %%, we obtain B = 50% 3(]‘>[)ep.
We would not expect B to represent the total bulk modulus (ions contribute, too!), but
the fact that this gives the right order of magnitude means that the electronic contribution

is substantial.
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