
Lecture 1

Motivation for course

The title of this course is “condensed matter physics” which includes solids and liquids

(and occasionally gases). There are also intermediate forms of matter, e.g., glasses,

rubber, polymers, and some biophysical systems. Basically this is the branch of physics

that covers the things we see and touch in everyday life, i.e., “real stuff.” Most of the

materials we meet in every day life are amorphous, but since we understand crystalline

materials so much better, that is what we will spend most of our time talking about.

Why should we study condensed matter physics?

1. “Because it’s there.”

2. Real-life physics

3. Frontier of complexity – “more is different”

Think of a spin - a multitude gives all sorts of magnetism due to interactions

4. Analogies with elementary particle physics, e.g., Higgs mechanism, topological

winding numbers, broken symmetry, etc.

5. Practical applications, e.g., transistors.

Drude Theory of Metals

(a) Phenomenology of metals – high electrical conductivity, shiny (reflecting),

ductile + malleable, high thermal conductivity, etc. Found generally in columns 1A and

2A of the periodic table, among heavier III-VI column elements, and in transition metals

and rare earths. In general, they have 1-2 extra electrons above a closed shell. Typically

ρmetal ∼ few µΩ-cm versus ρinsulator ∼ 1017 Ω-cm for insulators like polystyrene.

(b) Basic concepts - The extra electrons are called conduction electrons and they

are free to move within the volume. Core electrons stay home. The number of conduction

electrons

ne
∼= ZnAvagadro ∼ 1022 − 1023 electrons/cm3
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where Z is the chemical valence (see table 1.1 of AM). Electronic density is often defined

in terms of rs = radius of sphere whose volume is equal to the volume per conduction

electron:

V

N
=

1

n
=

4πr3

s

3
; rs =

(
3

4πn

)1/3

Typically rs ∼ 1− 3Å. Natural unit is Bohr radius a0 = ~
2/me2 = 0.529× 10−8 cm.

rs

a0

∼ 2− 6

For comparison, note that a typical atomic (ionic) radius is ∼ 0.3− 2Å. So conduction

electrons occupy a larger sphere than ions.

(c) Electrical Conductivity (resistivity)

σ =
1

ρ
~ = σ ~E ~E = ρ~

Let A = cross sectional area of wire, L = length,

j =
I

A
and V = EL ⇒ V = ρjL = ρ

I

A
L = IR

⇒ R = ρ
L

A
or ρ = R

A

L

Longer wires have more resistance. Larger A means more manuverability for electrons

and less resistance. As we said before, ρ(300◦K) ∼ 1µΩ-cm.

At not too low T , ρ(T ) ∼ T (phonon scattering). As T → 0, ρ(T ) → ρ0 = residual

resistivity due to scattering of impurities. This yields Matthiessen’s Rule:

ρ(T ) = ρ0 + ρ′T (1.1)

ρo

ρ

T

ρ~ T
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Assumptions of the Drude model:

(i) Electrons move independently under the influence of local electric field between col-

lisions.

(ii) Collisions are instantaneous, with some unspecified but energy-nonconserving mech-

anism.

(iii) Collisions are random, with probability dt/τ per unit time (no history dependence).

(iv) Electrons totally thermalized to local temperature by inelastic collisions.

DC Conductivity ( ~B = 0, ~E = const)

Electric current ~ = −ne〈~v〉 (1.2)

The minus sign is due to the negative charge of the electrons. There are two contributions

to
d~
dt

∣
∣
∣
∣
total

:

d~

dt

∣
∣
∣
∣
total

=
d~

dt

∣
∣
∣
∣
collision

+
d~

dt

∣
∣
∣
∣
field

Field:

Force = ~F =
d~p

dt
⇒ m

d〈~v〉
dt

= −e ~E

⇒ d~

dt

∣
∣
∣
∣
field

= −d(ne〈~v〉)
dt

=
ne2 ~E

m

Collisions: Collisions knock electrons out of the current flow. So we expect
d~
dt

∣
∣
∣
∣
coll

< 0:

degrade current

δ〈~v〉 = −〈~v〉 × (prob of collision ∼ fraction of particles affected)

= −〈~v〉dt

τ
(τ is relaxation time)

d〈~v〉
dt

∣
∣
∣
∣
coll

= −〈~v〉
τ

⇒ d~

dt

∣
∣
∣
∣
coll

= −~

τ
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So

d~

dt

∣
∣
∣
∣
total

=
ne2 ~E

m
− ~

τ

In a steady state with ~E = const, ~ must be constant:

d~

dt

∣
∣
∣
∣
total

= 0

⇒ ~ =
ne2τ

m
~E

= σ0
~E

where the DC (E = constant) conductivity is given by

σ0 = ne2τ
m sign of charge doesn’t matter

(When ~E = ~E(t), σ = σ(ω), i.e., the conductivity has frequency dependence.)

From experimental values of σ0 and n, we can work out τ (see AM, table 1.2). Typ-

ically, τ ∼ 10−14 − 10−15 sec. at room temperature (τ−1 ∼ T ). At low T , τ . 10−9 sec

and is limited by impurity scattering. Matthiessen’s rule: τ−1 ∼ τ−1

0
+ (τ−1)′T .

We can define a mean free path ` ∼ v̄τ . How do we estimate v̄? Drude used kinetic

theory of gases and said

1

2
mv̄2 =

3

2
kT

⇒ v̄rms ∼ 107
cm

s
at T = 300K

⇒ ` ∼ 1− 10Å ∼ lattice spacing or distance between ions

But this is misleading. (Should use vF ∼ 108 cm/s)

Conduction in a Magnetic Field

In the presence of a magnetic field ~B, an additional Lorentz force acts on the electrons.

~F = −e( ~E +
~v

c
× ~B)

This leads to the Hall Effect. Consider a metal bar with current flowing in it carried by

electrons with average velocity v̄.
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Now suppose we apply a magnetic field in the x̂ direction. This initially causes a down-

ward deflection of the moving electrons.

E
− − − −

− − − −

B

Negative charge builds up at the bottom; positive charge at the top. The transverse

electric field ~Et counters the magnetic force so that the electrons again flow in the −ŷ

direction.

− − −

−−
−−

J

E

− − − − −B

+ + + + + +

E t

Notice that if the charge carriers had been positively charged, ~Et would point in the

opposite direction (~ is in the same direction as before). Thus if we measure the voltage

difference between top and bottom, the sign should tell us the sign of the carriers. (We

expect negative, but sometimes it’s positive. More on this later.) It is easy to determine

the magnitude of ~Et by balancing the electric force with the magnetic force in the z-

direction. (Let’s use q rather than (−e).)

q Et = q
v̄

c
B ⇒ Et =

v̄

c
B

We know ~ = nq~v ⇒ v̄ = j/nq

Et =

(
1

nqc

)

jB = RHjB
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where RH = 1
nqc is called the Hall coefficient.

For q = −e, RH = − 1
nec

Experimentally, RH = Et
jB

~Et ⊥~ ⊥ ~B.

Note that because ~Et cancels the effect of the magnetic field, we still have jy = σ0Ey

(different coords than AM). You can check this by looking at
d~
dt

∣
∣
∣
∣
total

. Experimentally,

this isn’t always true. Drude model is too simple.

AC Conductivity

( ~B = 0, ~E(t)) σ(ω)

Consider an electric field that is varying in time:

E(t) = E0 cos ωt = Re
(
E0 e−iωt

)

The response of the electrons as well as the current will also vary in time. This leads to

a frequency dependent conductivity.

~(t) = Re
(
~0e

−iωt
)
where~0 = σ(ω) ~E0

In general σ(ω) will be complex, indicating that ~ is out of phase with ~E.

Calculate σ(ω)

Start with

d~

dt

∣
∣
∣
∣
total

=
ne2 ~E(t)

m
− ~

τ

Plug in ~(t) = j0e
−iωt and ~E(t) = ~E0e

−iωt to get

−iω~0 =
ne2 ~E0

m
− ~0

τ

(−iω +
1

τ
)~j0 =

ne2 ~E0

m

~j0 =
ne2

m

(
1

−iω + 1

τ

)

~E0

σ(ω) = ne2τ
m

(
1

1−iωτ

)
= σ0

1−iωτ
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If ~E = ~E0 cos ωt, then ~ =
σ0E0√

1 + ω2τ 2
cos(ωt− δ)

where tan δ = ωτ .

We can relate σ(ω) to the frequency dependent dielectric constant ε(ω). Consider

a piece of metal that is free-standing. Suppose we irradiate it with electromagnetic

radiation. There will be no free current ~f but there will be a polarization current

because the electrons slosh back and forth:

~ =
∂ ~P

∂t
⇒ ~P =

~

−iω
=

σ ~E

−iω
=

iσ ~E

ω

~D = ε ~E = ~E + 4π ~P ⇒ ε = 1 + 4π
~P

~E
= 1 +

4πiσ

ω

ε(ω) = 1 + 4πiσ(ω)
ω

Plasma Frequency (ωτ � 1)

At high frequencies (ωτ � 1)

σ(ω) =
σ0

1− iωτ
' iσ0

ωτ

⇒ ε(ω) = 1− 4πσ0

ω2τ
= 1− 4π

ω2 6 τ
ne2 6 τ

m
= 1−

ω2

p

ω2

where ω2

p = 4πne2

m . This is called the plasma frequency.

What does this mean physically? ωp is the characteristic frequency for the electrons

to slosh back and forth. These are called plasma oscillations, or plasmons. AM give a

simple model of this. Imagine displacing the entire electron gas, as a whole, through a

distance d with respect to the fixed positive background of ions.
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ext

+
+
+
+
+
+

d d

N / Z ions

N electrons

surface charge = +ned
Plasmon: longitudinal excitation
without E

surface charge = − ned

The resulting surface charge gives rise to an electric field of magnitude 4πσ, where σ

is the charge per unit area (recall Gauss’ Law). The electron gas obeys the equation of

motion

~F = −Ne~E ( ~Eext = 0. This ~E is internally generated.)

Nmd̈ = −Ne E = −Ne|4πσ| = −Ne(4πnde)

Nmd̈ = −4πne2Nd F = mẍ = −kx

↓

N = total number of electrons ω2

p = k
m = 4πne2

m

n =
N

V

There is yet another way to derive the plasma frequency: go back to

∂~

∂t
=

ne2

m
~E − ~

τ

think of sloshing electrons

as producing a polarization current.

At high frequencies (ωτ � 1), ω � 1

τ
we can neglect the last term. This leaves

∂~

∂t
=

ne2

m
~E
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Recall the continuity equation:
∂ρ
∂t

= −∇ ·~. So

∇ ·
[
∂~

∂t
=

ne2

m
~E

]

⇒ −∂2ρ

∂t2
=

ne2

m
∇ · ~E =

4πne2

m
ρ

or
∂2ρ

∂t2
= −ω2

pρ where again ω2

p =
4πne2

m

(mẍ = −kx form)

Transverse EM Waves

If we shine EM radiation on a metal, it will not penetrate very far (and in fact, it will

be reflected) for low frequencies because the electrons respond quickly enough to screen

it. At high frequencies, however, (ω � ωp) the electrons aren’t fast enough to respond to

~E(t) and the radiation gets through. Thus the metals become transparent to ultraviolet

light.

To see this mathematically, go back to Maxwell’s eqns. and derive the wave equation.

ρ = 0⇒ ∇ · ~E = 0 ∇ · ~B = 0

set µ = ε = 1 ∇× ~B =
4π

c
~ +

1

c

∂ ~E

∂t
(~ = σ ~E)

∇× ~E = −1

c

∂ ~B

∂t

∇× (∇× ~E) = −1

c

∂

∂t
(∇× ~B)

∇(∇ · ~E)−∇2 ~E = −1

c

∂

∂t
(
4π

c
σ ~E +

1

c

∂ ~E

∂t
)
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Fourier Transform w.r.t. time using E ∼ Eoe
−iωt:

∇2 ~E = −
(

iω
1

c2
4πσ ~E +

ω2

c2

~E

)

= −ω2

c2

(

1 +
4πiσ

ω
︸ ︷︷ ︸

)

~E

ε(ω)

At low frequencies, ωτ � 1, σ(ω) ∼ σ0 and ω2

c2
term is negligible. Hence

∇2 ~E ' −i
ω

c2
4πσ ~E

For ~E = ~E0e
i~k·~r, ∇2 ~E = −k2 ~E = −i

ω

c2
4πσ ~E

⇒ k2 = i
4πσω

c2

⇒ k =

√
4πσω

c

(
1 + i√

2

)

= k′ + ik′′

~E = ~E0e
ik′

·re−k′′r ← EM wave decays as it

enters the metal

Skin depth =
1

k′′
=

c√
2πσω

(ωτ � 1)

High Frequencies

For ωτ � 1, σ(ω) ∼ σ0

−iωτ
= i

ne2

mω

(

recall σ(ω) =
σ0

1− iωτ

)

so ∇2 ~E =
4π

c2

ne2

m
~E − ω2

c2

~E ω2

p =
4πne2

m

=
ω2

p − ω2

c2

~E ⇒ k2 = −
ω2

p − ω2

c2

For ω < ωp, this leads to exponential decay with decay length c
√

ω2

p − ω2
.

For ω > ωp, we get propagation and the metal becomes transparent at a frequency

νp ∼ 1016 sec−1.
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