
LECTURE 9

Virtual Functions and Polymorphism

It has always been possible to overload a function in one class with a member function
from another class. With inheritance, you can overload a base class member function
with a member function in a subclass as well. For example:

class Student

{

public:

float calcTuition();

//...other stuff

};

class GraduateStudent: public Student

{

public:

float calcTuition();

//...other stuff

};

main()

{

Student s;

GraduateStudent gs;

s.calcTuition(); //calls Student::calcTuition()

gs.calcTuition(); //call GraduateStudent::calcTuition()

}

But what if the exact class of the object can't be determined at compile time? To
demonstrate how this can occur, let's change the preceding program in a seemingly
trivial way:

class Student

{

public:

float calcTuition();

//...other stuff

};

class GraduateStudent: public Student

{

public:

float calcTuition();

//...other stuff

};

void func(Student &x)

86

{

x.calcTuition(); //to which calcTuition does this refer?

} //(answer: base class Student::calcTuition)

main()

{

Student s;

GraduateStudent gs;

func(s);

func(gs);

}

Instead of calling calcTuition() directly, the call is now made through an interme-
diate function, func(Student &x). Depending on how func(Student &x) is called,
x can be a Student or a GraduateStudent. You would like x.calcTuition() to call
Student::calcTuition() when x is a Student but call GraduateStudent::calcTuition()
when x is a GraduateStudent. Normally the compiler decides which function to call at
compile time. Even when a function is overloaded, the compiler uses the di�erent argu-
ment types to decide at compile time. But here the decision cannot be made until run
time, when the actual type of the object can be determined.

The capability to decide at run time which of several overloaded member functions
to call based on the actual type is called polymorphism. Poly means many and morph

means form (as in amorphous). Late binding is the mechanism C++ uses to implement
polymorphism. I will tend to use the two terms interchangably. Deciding which over-
loaded member functions to call at compile time is called early binding because that
sounds like the opposite of late binding. The default for C++ is early binding because
polymorphism adds a small amount of overhead both in terms of data storage and code
needed to perform the call.

Terminology: Another name for the actual type is the run{time type. In the previous
example, the run{time type of x is Student in the call func(s) and the run{time type of
x is GraduateStudent in the call func(gs). The declared type of x is Student because
that's what the declaration of func says.

To indicate polymorphism, the programmer must
ag the member function with the
keyword virtual. Virtual functions allow the programmer to declare the functions in a
base class that can be rede�ned in each derived class.

class Base

{

public:

virtual void func();

};

class DerivedClass: public Base

{

public:

87

virtual void func();

};

void extfunc(Base &b)

{

b.func();

}

main()

{

Base bc;

DerivedClass dc;

extfunc(bc); //calls Base::func()

extfunc(dc); //calls DerivedClass::func()

}

You need to declare the function virtual only in the base class. The \virtualness" is
carried down to the derived class automatically. So we could have written:

class Base

{

public:

virtual void func();

};

class DerivedClass: public Base

{

public:

void func(); //implicitly virtual

};

To allow a virtual function declaration to act as an interface to functions de�ned in
derived classes, the argument types speci�ed for a function in a derived class cannot
di�er from the argument types declared in the base class. If the arguments don't match,
there is no late binding and the function is speci�ed at compile time just like any ordinary
overloaded function. This is true even if the keyword \virtual" is used. Only very slight
changes are allowed for the return type. In particular, if the member function of the
base class returns a pointer or reference to a base class object, an overloaded member
function in a subclass may return a pointer or reference to an object of the subclass. In
other words, the following is allowed:

class Base

{

public:

virtual Base* func();

};

class DerivedClass: public Base

88

{

DerivedClass* func();

};

A virtual function must be de�ned for the class in which it is �rst declared (unless
it is declared to be a pure virtual function). A virtual function can be used even if no
class is derived from its class, and a derived class that does not need its own version
of a virtual function need not provide one. When deriving a class, simply provide an
appropriate function, if it is needed.

The great bene�t of polymorphism is that one can add new derived classes without
changing the base class or the older derived classes. In some cases you don't even have
to recompile the existing classes. Polymorphism greatly facilitates encapsulation of the
code. The details of a function can be dealt with in the base class and its derived classes,
while the application can call the generic function which is bound at run time. The
generic function acts as a bu�er or an interface between the details of the function and
the applications which will use various versions of the function.

Inter-
Applications

Function
Details face

For example,

class StuffYouCook{};

class Nachos: public StuffYouCook {};

class Oven

{

public:

virtual void cook(Nachos &nachos);

//other stuff...

};

class Microwave: public Oven

{

public:

virtual void cook(Nachos &nachos);

//other stuff...

};

Nachos makeNachos(Oven &oven) //external function

{

Nachos n;

oven.cook(n); //bound at run time

return n;

}

89

The function makeNachos is passed an Oven of some type. Given that oven, it assembles
all the stu� into an object n and then cooks them by calling oven.cook. Exactly which
function is used, function Oven::cook or Microwave::cook, depends on the real{time
type of oven. The function makeNachos has no idea{and doesn't want to know{what
the run{time type of oven is. Notice that makeNachos doesn't need to know the details
of oven. That's what we mean by encapsulation and hiding the details of one part of
the program from another part of the program. Polymorphism has allowed us to greatly
simplify the code since makeNachos doesn't have any of the oven or Nachos details. The
result is extensible. If a new class of oven comes along, e.g. ToasterOven, with a new
cook function (ToasterOven::cook(Nachos&)), we do not need to change makeNachos

to incorporate the new function. Polymorphism automatically includes the new function
and calls it when necessary.

Polymorphism is the key to the power of object{oriented programming. It's so im-
portant that languages that don't support polymorphism cannot advertise themselves as
object{oriented languages. Languages that support classes but not polymorphism are
called object{based languages. Ada is an example of such a language.

Comments on Virtual Functions

1. Static member functions cannot be declared virtual. Because static member func-
tions are not called with an object, there is no run{time object to have a type.

2. Specifying the class name in the call forces the call to bind early. For example,
the following call is to Base::func because that's what the programmer indicated,
even if func is declared virtual:

class Base

{

public:

virtual void func();

};

class DerivedClass: public Base

{

public:

void func(); //implicitly virtual

};

void test(Base &b)

{

b.Base::func(); //This call is not bound late

}

3. A virtual function cannot be inlined. To expand a function inline, the compiler
must know which function is intended at compile time.

90

4. Constructors cannot be virtual because there is no completed object to use to
determine the type. At the time the constructor is called, the memory that the
object occupies is just an amorphous mass. It's only after the constructor has
�nished that the object is a member of the class in good standing. But you can
de�ne a virtual function that has the same e�ect as a virtual constructor; the
function calls a constructor and returns a constructed object (see Stroustrup (3rd
ed.), pages 424-425, for details).

Virtual Destructors

The destructor should normally be declared virtual. If not, you run the risk of im-
properly destructing the object, as in the following example:

class Base

{

public:

~Base();

};

class DerivedClass: public Base

{

public:

~DerivedClass();

};

void finishWithObject(Base *pHeapObject)

{

//work with object...

//now return it to heap memory

delete pHeapObject; //this calls ~Base() no matter

//what the run-time type of

//pHeapObject is

If the pointer passed to finishWithObject really points to DerivedClass, the DerivedClass
destructor is not invoked properly. Declaring the destructor virtual solves the problem:

class Base

{

public:

virtual ~Base(){}; //even an empty destructor will do

};

class DerivedClass: public Base

{

public:

~DerivedClass(); //implicitly virtual

};

void finishWithObject(Base *pHeapObject)

91

{

//work with object...

//now return it to heap memory

delete pHeapObject; //this calls the correct destructor

When an object is deleted, C++ runs the object's destructor. Given that we only
have a pointer to the Base object, which destructor should C++ run, ~Base() or
~DerivedClass()? The answer depends on which kind of object the pointer points
to. Such behavior is exactly what declaring a member to be virtual arranges. Since one
can't predict when writing a base class whether any class eventually derived from the
base class will have a destructor member, it is safest to anticipate the possibility by pro-
viding a virtual destructor in the public interface of the base class. You should de�nitely
use a virtual destructor if you use virtual functions and pointers to the base class. In
short, the presence of a virtual destructor in Base ensures that every class derived from
it will be supplied with a destructor (thus getting the size of the object right), even if
the derived class doesn't have a user{de�ned destructor. Even an empty destructor will
do.

How Polymorphism Is Implemented

When a class has at least one virtual function, C++ adds an additional, hidden
pointer{not one pointer per virtual function, just one pointer if the class has any virtual
functions. This pointer points to a structure known the v_table. The v_table contains
a list of pointers to all the virtual functions de�ned in the class. Suppose we have the
following class hierarchy:

class Base

{

public:

virtual void f1();

virtual void f2();

void nonVirtualFn();

int d1;

}

class DC: public Base

{

public:

virtual void f3();

virtual void f1();

int d2;

};

void func(Base &b)

{

b.f1();

b.f2();

92

};

main()

{

Base base;

DC subclass1; //declare 2 subclass elements

DC subclass2;

func(base);

func(subclass1);

}

The v_table con�guration is shown in the �gure. Notice that the two DC objects have
their own v_table pointers, but they share the same v_table.

d1

d2

d1

d1

d2

subclass1

subclass2

DC::v_table

Base::v_table

f1

f2

f1

f2

f3

Base::f1()

Base::f2()

DC::f1()

DC::f3()

base

When func(base) is called in main, it is passed the object base. The call to b.f1

leads to Base::fn1 if you just follow the arrows in the �gure. The second time func is

93

called in main, it is passed the object subclass1. If you follow the arrows, the call to
b.f1 now leads to DC::fn1. The call to b.f2 leads to Base::fn2 for both the object
base and the object subclass1. So virtual functions introduce a little \overhead", but
not much.

Abstract Classes and Pure Virtual Functions

Many classes resemble class Employee in that they are useful as themselves and also as
bases for derived classes. For such classes, the techniques described in the previous section
su�ce. However, not all classes follow that pattern. Some classes represent abstract
concepts for which objects cannot exist. For example, one can observe the di�erent
species of warm{blooded, baby{bearing animals and conclude that there is a concept
mammal. You can derive classes from mammal, such as canine, feline, and hominid.
However, it is impossible to �nd anywhere on earth a pure mammal, that is, a mammal
that isn't a member of some species. Mammal is an abstract concept. Another example
is the class Shape. A Shape makes sense only as the base of some class derived from it.
It doesn't make sense to de�ne functions that rotate or draw a Shape object, just like
there are no photos of pure mammals. So we declare the virtual functions of class Shape
to be pure virtual functions. A virtual function is \made pure" by setting it equal
to zero:

class Shape{ //abstract class

public:

virtual void rotate(int) = 0; //pure virtual function

virtual void draw() = 0; //pure virtual function

virtual bool is_closed() = 0; //pure virtual function

//...

};

A class with one or more pure virtual functions is an abstract class, and no objects of
that abstract class can be created:

Shape s; //error: can't create object of abstract class Shape

But it's ok to create a pointer or a reference to an abstract class

func1(Shape *s); //legal

func2(Shape &s); //legal

An abstract class can be used only as an interface and as a base for other classes. For
example:

class Point{ ... };

class Circle: public Shape {

public:

void rotate(int){ } //overrides Shape::rotate

94

void draw(); //overrides Shape::draw

bool is_closed(){return true;} //overrides Shape::is_closed

Circle(Point p, float r);

private:

float radius;

Point center;

};

A pure virtual function is a placeholder in the base class for the derived class to overload
with its own implementation. Without that placeholder in the base class, there is no
overloading. A pure virtual function that is not de�ned in a derived class remains a pure
virtual function, so the derived class is also an abstract class. This allows us to build
implementations in stages:

class Polygon: public Shape { //abstract class

public:

bool is_closed(){return true;} //overrides Shape::is_closed

//... draw and rotate not overridden...

};

Polygon b; //error: declaration of an object of abstract class Polygon

class Square: public Polygon {

public:

void draw(); //overrides Shape::draw

void rotate(int); //overrides Shape::rotate

//....

};

Square s; //fine (assume some suitable constructor)

An important use of abstract classes is to provide an interface without exposing any
implementation details. For example, an operating system might hide the details of its
device drivers behind an abstract class:

class Device { //abstract class

public:

virtual int open(int opt) = 0;

virtual int close(int opt) = 0;

virtual int read(char* p, int n) = 0;

virtual int write(const char* p, int n) = 0;

virtual ~Device() {}; //virtual destructor

};

95

We can then specify drivers as classes derived from Device, and manipulate a variety of
drivers through that interface.

Employee Example of Virtual Functions

One can describe a collection of objects using an array of base class pointers. One
wants to use pointers if the objects have di�erent sizes. Each pointer is constructed with
new, which sets aside the appropriate amount of memory for that particular object. In
other words, we can make an array of di�erent types of objects if they are all derived
from the same base class by making an array of pointers to the base class. For example,
suppose we want to make a data base of all employees. There are di�erent kinds of
employees and each type takes up a di�erent amount of memory.

class EmployeeList : public Array<Employee *>

{

...

};

EmployeeList myDept(30);

WageEmployee *wagePtr;

SalesPerson *salePtr;

Manager *mgrPtr;

wagePtr = new WageEmployee("Bill Shapiro");

myDept[0] = wagePtr;

salePtr = new SalesPerson("John Smith");

myDept[1] = salePtr;

myDept[2] = new Manager("Mary Brown");

for(int i=0; i < myDept.numElts(); i++)

cout << myDept[i]->getName() << endl;

//Now try:

for(int i=0; i < myDept.numElts(); i++)

cout << myDept[i]->computePay() << endl;

// error, computePay not a member of Employee

If Employee did have a computePay, it would not be the right one: we need a di�erent
computePay for each employee type.

Solution: Virtual functions

class Employee //abstract class

96

{

public:

Employee(const char* nm);

char *getName() const;

virtual float computePay() const=0; //placeholder fcn that is never called

virtual ~Employee() {}

private:

char name[30];

};

Now make sure WageEmployee, SalesPerson, Manager, each have the line:

float computePay() const; // implicitly virtual

Now to use it:

Employee *empPtr;

float salary;

empPtr = &aWorker;

salary = empPtr->computePay(); // call WageEmployee::computePay

empPtr = &aSeller;

salary = empPtr->computePay(); // call SalesPerson::computePay

empPtr = &aBoss;

salary = empPtr->computePay(); // call Manager::computePay

//Or use our array of pointers:

for(int i=0; i < myDept.numElts(); i++)

cout << myDept[i]->computePay() << endl;

// No problem; this works fine.

97

