
LECTURE 7

Overloading Operators Continued

If an operator for a built{in type has a certain number of arguments, you can't over-
load it with a di�erent number of arguments. For example, you can't make a unary
operator binary or a binary operator (like +) ternary. In addition, if you overload
the addition operator for some class Z (Z::operator+()) and the assignment opera-
tor (Z::operator=()), the compiler will not generate a de�nition of Z::operator+=().
Each operator must be overloaded independently. I want to talk about overloading a few
other operators.

Overloading the Pre�x and Post�x Operators

Suppose we have a class USDollar which has an integer number of dollars and an
integer number of cents less than 100. The class declaration might look something like:

class USDollar

{

friend USDollar operator+(USDollar&, USDollar&);

friend USDollar& operator++(USDollar&);

public:

USDollar(unsigned int d, unsigned int c);

private:

unsigned int dollars;

unsigned int cents;

};

The operator++() increments the cents �eld. If it goes over 100, it increments the dollar
�eld and zeros out the cents. This operator returns a reference to USDollar because it
changes the value of the provided object.

USDollar& operator++(USDollar &s)

{

s.cents++;

if (s.cents >=100)

{

s.cents -= 100;

s.dollars++;

}

return s;

}

If you want to overload the pre�x operator ++x separately from the post�x version x++,
here is the rule. operator++(ClassName) refers to the pre�x operator and
operator++(ClassName,int) refers to the post�x operator. The int is never used; the
argument is simply a dummy used to distinguish between pre�x and post�x applications.

66

The same rule applies to operator--(). If you only provide one operator++() or
operator--(), most compilers will use it for both the pre�x and post�x versions.

Cast Operator

The cast operator can be overloaded as well. Let's take an example from C++ for

Dummies.

class USDollar

{

public:

USDollar(double value = 0.0); //constructor with default value

//the following function acts as a cast operator

operator double()

{

return dollars + cents / 100.0;

}

private:

unsigned int dollars;

unsigned int cents;

};

USDollar::USDollar(double value) //constructor-converts double to USDollar

{

dollars = (int)value;

cents = (int)((value - dollars) * 100 + 0.5);

}

int main()

{

USDollar d1(2.0), d2(1.5), d3;

//invoke cast operator explicitly...

d3 = USDollar((double)d1 + (double)d2);

//...or implicitly

d3 = d1 + d2;

return 0;

}

A cast operator is the word operator followed by the desired type. The member function
USDollar::operator double() provides a mechanism for converting an object of class
USDollar into a double. Cast operators have no return type. As the preceding example
shows, conversions using the cast operator can be invoked either explicitly or implicitly.
Look at the implicit case carefully.

In trying to make sense of the expression d3 = d1 + d2, C++ �rst looked for member
function USDollar::operator+(USDollar). When that wasn't found, it looked for the
non{member version operator+(USDollar,USDollar). Lacking that as well, it started
looking for an operator+() that it could use by converting one or the other arguments

67

into a di�erent type. Finally it found a match: by converting both d1 and d2 to doubles,
it could use the intrinsic operator+(double, double). It then has to convert the re-
sulting double back to USDollar using the constructor.

This demonstrates both the advantage and disadvantage of providing a cast operator.
Providing a conversion path from USDollar to double relieves programmers of the need
to provide their own set of operators. USDollar can just piggyback on the operators
de�ned for double.

On the other hand, it also removes the ability of the programmer to control which
operators are de�ned. By providing a conversion path to double, USDollar gets all of
double's operators whether they make sense or not. In addition, going through the extra
conversions may not be the most e�cient process in the world. For example, the simple
addition just noted involves 3 type conversions with all of the attendant function calls,
multiplications, divisions, and so on.

Be careful not to provide 2 conversion paths to the same type. This confuses the
compiler.

Overloading Function Call

The function call operator can be overloaded. This typically takes the form operator()()

or operator()(arguments). These overloaded operators must be member functions.
The �rst pair of parentheses represents the name of an object of the class. The argu-
ments go inside the second pair of parentheses. For example:

#include <iostream.h>

#include <math.h>

class Distance{

private:

double xc, yc;

public:

Distance(double x, double y) //constructor

{xc=x;

yc=y;}

double operator()() //returns a double

{return sqrt(xc*xc+yc*yc);}

double operator()(double x) //returns a double

{xc=x; //reset xc

return (*this)();} //use definition of operator ()()

};

main()

{

double xx, yy;

cin >> xx >> yy;

68

Distance d(xx,yy); //call constructor

double oldlength=d(); //call operator ()()

xx=5.0; //reset xx

double newlength=d(xx); //call operator ()(double x)

cout << oldlength << " " << newlength<<endl;

}

Notice that overloading the function call operator has the form double operator()() or
double operator()(arguments) while the cast operator has the form operator double().
Remember that the cast operator has no return type.

Type Conversion Using Constructors

C++ can use class constructors to convert an object from one type to another. It
will attempt to do this any time it can. However, it can only use constructors with only
a single argument (or with all arguments defaulted except for one). This is because of
syntax more than anything. Consider the following example:

#include <iostream.h>

class Number

{

public:

Number(double x) //constructor

{xc=x;}

private:

double xc;

};

void func(Number N)

{cout << "In function" << endl;}

main()

{

double x;

cin >> x;

func(x);

}

func is de�ned to take an argument that is a Number. However, in main func(x) is called
with an argument that is a double. So C++ tries to convert the argument to a Number.
It notices that the constructor for Number essentially converts a double into a Number.
So it uses the constructor to do the type conversion. If ambiguities arise, the compiler
will generate an error. For example,

#include <iostream.h>

class Number

69

{

public:

Number(double x) //constructor

{xc=x;}

private:

double xc;

};

class AnotherNumber

{

public:

AnotherNumber(double x) //constructor

{xc=x;}

private:

double xc;

};

void func(Number N)

{cout << "In function 1" << endl;}

void func(AnotherNumber N)

{cout << "In function 2" << endl;}

main()

{

double x;

cin >> x;

func(x);

}

To implement func(x) C++ could convert x to a Number and use func(Number N), or to
AnotherNumber and use func(AnotherNumber N). With no way to resolve the ambiguity,
the compiler won't compile the program. To resolve the ambiguity, we add an explicit
call to the intended constructor:

main()

{

double x;

cin >> x;

func(Number(x));

}

Notice how the preceding call to the constructor is similar to a cast. Here we have cast
a double to a Number. The similarity is more than super�cial. C++ allows this format
for specifying a cast. This new format can also be used for intrinsic casts, plus the old
format can be used for constructor conversions, as shown in the following:

70

void fn(int *pI)

{

float x = 10.5;

int i = int(x); //same as int i = (int)x;

func(Number(x)); //new format for a cast

func((Number)x); //old format for a cast

double *pD = (double*)pI; //older format must be used when

//casting pointers

}

Either format is �ne. However, you must use the older format when casting from one
pointer type to another due to the syntactical confusion that * by itself would cause.
Note that a constructor cannot specify an implicit conversion from a user{de�ned type
to a basic type because the basic types are not classes. An overloaded cast operator must
be used in this case.

The following rules are very good ideas:

1. Don't make a cast operator and a constructor that do the same jobs. It will confuse
the compiler.

2. Don't make more conversion operators than necessary.

If you do not want the constructor to be used implicitly as a conversion operator,
then declare the constructor explicit. An explicit constructor will be invoked only
explicitly and implicit conversion will be suppressed. For example,

#include <iostream.h>

class Number

{

public:

explicit Number(double x) //explicit constructor

{xc=x;}

private:

double xc;

};

void func(Number N)

{cout << "In function" << endl;}

main()

{

double x;

cin >> x;

func(x); //error: no implicit double -> Number conversion

}

71

Boolean Class

As an example of using constructors to do type conversion, Barton and Nackman
introduce the Boolean class on pages 151{153. Boolean constants are true or false. The
class is de�ned as follows:

//This is the Boolean.h file.

#ifndef BOOLEANH

#define BOOLEANH

class Boolean{

public:

// Constants

enum constants{ False = 0, True = 1 }; //writing "false" or "true"

//will clash with built-in types.

// Constructors used for type conversion.

Boolean() {} // Uninitialized.

Boolean(int i) : v(i != 0) {} // Initialize v to (i != 0).

Boolean(float f) : v(f != 0) {} // Initialize v to (f != 0).

Boolean(double d) : v(d != 0) {} // Initialize v to (d != 0).

Boolean(void* p) : v(p != 0) {} // Initialize v to (p != 0).

// Overloading cast operator to convert Boolean to int.

operator int() const{ return v; } // To allow "if (boolean-value)..."

// Overloading negation operator.

Boolean operator!() const { return !v; }

private:

char v;

};

#endif

We use char v in order to store 0(false) and 1(true) in the smallest amount of space in
memory. Each of the single argument constructors de�nes a conversion from a built{in
type to a Boolean. The Boolean object created is initialized to true if the constructor
argument is nonzero and to false otherwise. A void* is a pointer to an object of unknown
type; any pointer can be converted automatically to a void* in a manner that converts
a null pointer to a null void* and a non{null pointer to a non{null void*. The cast
operator is overloaded to return an int. One might worry that \return v" might result
in a char, but the compiler knows to convert the char into an int.

Here are some examples of how Boolean is used:

72

Boolean b1(Boolean::True); //calls Boolean(int)

Boolean b2(3); //calls Boolean(int)

int* pI=new int(3); //pI points to an integer initialized to 3

Boolean b3(pI); //calls Boolean(void*)

Boolean b4(3.0); //calls Boolean(float)

Built{In Boolean Type

C++ has a built{in Boolean type called bool. This is a relatively new feature of
C++, so your book doesn't mention it, but it's described on page 71 of Stroustrup (3rd
edition). A bool has one of two values: true or false. A bool has the same status as
double or int or float; it's a built{in type. So you don't need a Boolean include �le if
you use bool. A Boolean is used to express the results of logical operations. For example:

void f(int a, int b)

{

bool b1=a==b;

//....

}

If a and b have the same value, b1 becomes true; otherwise b1 is false.
A function that tests for some condition often returns a bool. For example:

bool greater(int a, int b) {return a>b;}

By de�nition, true has the value 1 when converted to an integer and false has the value 0.
Conversely, integers can be implicitly converted to bool values: nonzero integers convert
to true and 0 converts to false. For example:

bool b = 8; //bool(8) is true, so b becomes true

int i = true; //int(true) is 1, so i=1

In arithmetic and logical expressions, bools are converted to ints; integer arithmetic and
logical operations are performed on the converted values. If the result is converted back
to bool, a 0 is converted to false and a nonzero value is converted to true.

bool a = true;

bool b = true;

bool x = a + b; //a+b is 2, so x=true

bool y = a|b; //a|b=1, so y=true

A pointer can be implicitly converted to a bool. A nonzero pointer converts to a true;
zero{valued pointers convert to false.

The Boolean class de�ned by Barton and Nackman has the line

enum constants{ false = 0, true = 1 };

This won't compile because \false" and \true" are already de�ned by the built{in
bool. So if you change \false" to False and \true" to True everywhere in Boolean.h
and Boolean.C, it compiles just �ne.

73

