
LECTURE 6

Friends

Two closely coupled classes often need access to each other's data members for e�-
ciency:

class Matrix;

class Vector {

.

.

.

friend class Matrix;

.

.

};

Now Matrix can access Vector's private data. Without a change in the Matrix class
de�nition, Vector still can't get at Matrix's private members. It doesn't matter where
the friend declaration is; it can be in either public or private; it has the same access to
the private and public members of the class.

Functions can also be friends of a class. These friend functions can be external
functions or they can be members of another class. For example,

friend Point::distance(Point);

Notice that the extended name of the function is used in the friend declaration. If you
want a member function of class B to be a friend of class A, you need to de�ne class
B �rst before de�ning class A. Otherwise, you have to declare all of class B a friend of
class A. In other words, a friend declaration cannot be the �rst mention of a member
function.

Complex Number Class

As an example of using friend functions, consider the following class for complex
numbers.

#include <iostream.h>

#ifndef COMPLEX //comment 2 on "include guards"

#define COMPLEX

class complex

{

private:

double re, im;

public:

complex(double r = 0, double i = 0)

: re(r), im(i) //Constructs re and im. Here this

56

//this is the same as {re=r; im=i;}.

//This syntax must be used for

//data members that are objects of

//another class (see Lecture 3).

{ }

double real() const //Inline since definition of re

{ return re; } //and im are in the class. A

double imag() const //function defined in a class

{ return im; } //declaration is automatically

// inlined.

complex & operator += (const complex &);

// ditto for -=, *=, /=

// Friends are not member functions

friend double real(const complex &);

friend double imag(const complex &);

friend complex operator + (const complex &, const complex &);

// This could be written as

// complex operator + (const complex &) const;

friend complex operator + (const complex &, double);

friend complex operator + (double, const complex &);

// ditto for -, *, /

friend int operator == (const complex &, const complex &);

friend int operator == (const complex &, double);

friend int operator == (double, const complex &);

// ditto for !=

friend istream & operator >> (istream &, complex &);

friend ostream & operator << (ostream &, const complex &);

};

inline complex& //Comment 1: Inline

complex::operator += (const complex& r)

{

re += r.re;

im += r.im;

return *this;

}

57

inline complex&

complex::operator *= (const complex& r)

{

double f = re * r.re - im * r.im;

im = re * r.im + im * r.re;

re = f;

return *this;

}

inline double imag (const complex& x)

{ return x.imag(); }

inline double real (const complex& x)

{ return x.real(); }

//This was a friend function, but no "friend" keyword needed here:

inline complex

operator + (const complex& x, const complex& y)

{

return complex(real(x) + real(y), imag(x) + imag(y));

}

inline complex

operator + (const complex& x, double y)

{

return complex(real(x) + y, imag(x));

}

inline complex

operator * (const complex& x, const complex& y)

{

return complex(real(x) * real(y) - imag(x) * imag(y),

real(x) * imag(y) + imag(x) * real(y));

}

inline complex

operator * (const complex& x, double y)

{

return complex(real(x) * y, imag(x) * y);

}

58

inline complex

operator - (const complex& x) //minus sign is a unary operator

//(non-member function with one argument).

{

return complex(-real(x), -imag(x));

}

inline int

operator == (const complex& x, const complex& y)

{

return real(x) == real(y) && imag(x) == imag(y);

}

inline int

operator == (const complex& x, double y)

{

return real(x) == y && imag(x) == 0;

}

// class istream and class ostream are defined in iostream.h. Overloading

// the >> and << operators allow us to use cin >> c and cout << c.

ostream& operator << (ostream &s, const complex &c)

{

s << "(" << real(c) << "," << imag(c) << ")";

return s;

}

istream& operator >> (istream &s, complex &c); //see Stroustup (3rd ed) p. 621

/*

input formats for a complex number ("f" indicates a floating-point

number):

f pure real number

(f) pure real number

(f,f) has real and imaginary parts

*/

{

double re = 0, im=0;

char ch=0;

s >> ch;

if(ch == '('){

59

s >> re >> ch;

if(ch == ',') s >> im >> ch;

if(ch != ')') s.clear(ios_base::badbit); //set state to bad

}

else{

s.putback(ch);

s >> re;

}

if(s) c = complex(re,im);

return s;

}

#endif

Notice that we are using the built{in copy constructor, the built{in operator =, and
built{in destructor. That's why they are not overloaded in the class COMPLEX.

Comment 1: Inline

C++ allows functions to be de�ned with the keyword inline. An inline function

is written like a normal function, but it doesn't act the same. The code for an inline
function expands in place wherever the function is used. Contrast this with a normal
function. When a normal function is compiled, the code is put in one location. Every
place where the function is called, the compiler sticks in code to jump to that place where
the function is. Inline functions are duplicated everywhere they are needed, so you don't
have to waste time calling the function. On the other hand, the executable is smaller if
the function is only in one place and doesn't exist in multiple copies.

To inline a function, the programmer adds the keyword inline in front of the de�-
nition. Because the de�nition is necessary to expand an inline function, you must de�ne
an inline function before it can be used. So inline functions should be de�ned in an
include �le. (Conventional \outline" functions should not be de�ned in an include �le
because of the danger of de�ning a function multiple times. An \outline" function is a
normal, non{inline function.) Inline functions are useful only for small functions. The
disadvantage of expanding a large function inline outweighs the small gains from inlining
the function. The break{even point for an inline function is about 3 executable lines.
Even if you declare a function to be inline, several things may force the compiler to
outline the function. For example, including any type of looping statement (such as a
for loop) in a function usually forces it outline. You shouldn't inline such a function
anyway, because the time it takes to execute the loop overshadows any minor gain from
declaring the function inline.

Debugging an inline function can be tricky. Because an inline function is expanded
as part of each line that calls it, you cannot single step an inline function with the
debugger. The entire inline function executes as a single line no matter how many lines
it contains and no matter how much havoc those lines might cause. So to debug an inline
function, change it to an outline function by removing the keyword inline and recompile

60

the program. By the way, sometimes in recompiling, it helps to remove the .o �les.
Comment 2: Include Guards

Notice the preprocessor commands

#ifndef COMPLEX

#define COMPLEX

. . .

#endif

The contents of the �le between #ifndef COMPLEX and #endif are ignored by the com-
piler if COMPLEX has already been de�ned previously. This is an example of the use of
include guards which are often used in header (.h) �les to prevent class de�nitions or in-
line functions from getting #included twice in the same compilation unit. Such multiple
inclusions are a danger when there are multiple header �les being included in the di�erent
.cc source �les that make up a single program. Let's suppose there are several .cc source
�les that make up a single program. If each includes only one user-constructed header �le
\myfile.h", the compiler will not complain of multiple class de�nitions. But if myfile.h
contains the de�nition of external functions, there will be compiler errors. It's not ok to
have multiple de�nitions of external nonmember functions. External functions should be
de�ned only once in the program. You should put the de�nition of external functions in
a .cc source �le. It's not ok to include the same header �le more than once in a .cc

source �le. Sometimes one header �le includes another header �le. Then there is the
danger of muliple inclusions of a header �le in each of the .cc source �les that make up
a program. Include guards can be used to prevent this. For example, suppose there are
2 header �les:

//********************complex.h**********************

#ifndef COMPLEX

#define COMPLEX

class complex

{...};

#endif

//*******************matrices.h***********************

#include "complex.h"

class matrix.h

{ ... };

//*******************file.cc****************************

#include "complex.h"

#include "matrix.h"

main(){

...

}

The include guards prevent complex.h from being included more than once in file.cc.

61

More on Overloading Operators

We introduced the concept of overloading operators in Lecture 4, but there is more
to be said. Most of this class consists of overloading operators. Notice that just because
we have overloaded the operator complex operator + (const complex &, double),
doesn't mean that the operator friend complex operator + (double, const complex &)

has been covered. Because these two operators have di�erent arguments, they have to
be overloaded separately.

To Be or Not To Be a Member

Operators can be implemented as nonstatic member functions or as non{member
functions. We can see examples of both in the complex class. The friend functions
are nonmember functions. One should keep in mind that this is the hidden �rst ar-
gument to all nonstatic member functions. So when an operator is implemented as a
nonstatic member function, it has one less explicit argument compared to the equivalent
nonmember function. For example, the following are equivalent. You only need one of
them.

complex operator + (const complex &, const complex &); //nonmember function

complex

complex::operator + (const complex &) const; //member function

When should you implement an operator as a member and when as a nonmember?
The following operators must be implemented as member functions:

= Assignment

() Function call

[] Subscript

-> Class membership

Other than the operators listed, there isn't much di�erence as a member or as a non-
member, with the following exception. An operator like the following could not be
implemented as a member function:

complex operator + (double, const complex &);

Notice that the �rst argument is a double, so to be a member function, it would have to
be a member of class double. Mere mortals cannot add operators to the intrinsic classes.
Thus, operators such as the preceding must be nonmember functions.

If you have access to the class internals, make the overloaded operator a member of
the class. This is particularly true if the operator modi�es the object upon which it
operates.

62

Overloading ostream operator

C++ overloads the left shift and right shift operators to perform input and output.
The operator>>() is called the extractor and operator<<() is called the inserter. The
standard iostream library knows how to input and output built{in types like float and
int, but not user-de�ned types like complex. We need to overload these operators so
that we can write things like cout << c where c is a complex number. Let's look at the
declaration:

ostream& operator << (ostream &s, const complex &c);

The arguments tell us that an ostream object will appear to the left of << and a complex
number will appear to the right. In general, when overloading the ostream& operator <<,
the second argument will be a const reference to the class object. It's const because
outputting the object's value to the screen or a �le does not change it. Thus we can write

s << c

or

cout << c

Notice that the ostream object need not be called s; cout is a perfectly good ostream

object. Notice that the operator<<() returns the ostream passed to it. This allows the
operator to be chained with other inserters in a single expression, i.e, this allows us to
string output operators together:

complex c, d, x;

ostream s;

s << c << d << x;

Because the operator<<() binds left to right, the expression

s << c << d << x;

can be interpreted as

(((s << c) << d) << x);

The �rst insertion outputs the complex number c to s. The result of this expression is
the object s, which is then passed to operator<<(ostream &, const complex &). It is
important that this operator return its ostream object so that the object can be passed
to the next inserter in turn.

Overloading the extractor operator >>() is a little more involved since a complex
number can be entered using di�erent formats. Notice that in the declaration

istream& operator >> (istream &s, complex &c);

the second argument is a non{const reference to the class object because the class
object is going to be modi�ed by the input. The de�nition associated with overloading
the extractor comes from page 621 of Stroustrup (3rd edition):

63

istream& operator >> (istream &s, complex &c)

/*

input formats for a complex number ("f" indicates a floating-point

number):

f pure real number

(f) pure real number

(f,f) has real and imaginary parts

*/

{

double re = 0, im=0;

char ch=0;

s >> ch;

if(ch == '('){

s >> re >> ch;

if(ch == ',') s >> im >> ch;

if(ch != ')') s.clear(ios_base::badbit); //set state to bad

}

else{

s.putback(ch);

s >> re;

}

if(s) c = complex(re,im);

return s;

}

The local variable ch is initialized to avoid having its value accidentally be ')' after a
failed �rst >> operation. The �nal check of the stream state ensures that the value of the
argument c is changed only if everything went well. The operation for setting a stream
state is called clear() because its most common use is to reset the state of a stream
to good(); ios_base::goodbit is the default argument value for ios_base::clear().
Here, however, we are using clear() to set the state of s to false.

Complex Class

With this complex class de�ned, you can do all the usual things with complex num-
bers. For example,

complex i(0,1), one(1,0);

complex b,c;

b = one/i;

c = b * i + 2 + 3 * i;

cout << c;

This complex class is built into gnu C++ library. There are other standard classes:
string, lists, queues, stacks, and random numbers. A link to a description of one version

64

of this library is on the class home page. Also see lecture 15 on the standard library
(STL).

65

