
LECTURE 5

Templates

We have written a simple array class of oat variables. But suppose we want to have
arrays of integers, or doubles, or something else. It's a pain to write a separate array
class for each new case. Templates make it easy to have arrays of anything; not just ints,
oats, and doubles, but anything. In general, templates make it easy to make a family
of classes of closely related objects. To make a template, write the class for something
de�nite, like oats. Then turn it into a class template. As an example, let's do this with
our array class.

#include <iostream.h>

#include "arraytemplate.h"

void main()

{

// Create arrays with the desired number of elements

int n;

cin >> n;

Array<float> x(n);

Array<int> y(n);

// Read the data points

for (int i = 0; i < n; i++) {

cin >> x[i] >> y[i];

}

...

}

File "arraytemplate.h"

A class template declaration consists of the keyword template, followed by a list
of template arguments enclosed in angular brackets (< >), followed by a class declara-
tion. These template arguments may be type{arguments preceded by the keyword class

and/or numeric argument declarations. For example:

template<class T> class Array; // Class template declaration

or

template<class T, int nL> class vector; // For a vector of length nL.

Let's stick with the �rst case.

47

template<class T> class Array; // Class template declaration

template<class T> // T="type",e.g.,int or float

class Array {

public:

Array(int n); // Create array of n elements

Array(); // Create array of 0 elements

Array(const Array<T>&); // Copy array

~Array(); // Destroy array

T& operator[](int i); // Subscripting

int numElts(); // Number of elements

Array<T>& operator=(const Array<T>&); // Array assignment

Array<T>& operator=(T); // Scalar assignment

void setSize(int n); // Change size

private:

int num_elts; // Number of elements

T* ptr_to_data; // Pointer to built-in array of elements

void copy(const Array<T>& a); // Copy in elements of a

};

Notice that the declarations of the constructor and destructor member functions do not
include the parameter T.

De�nitions of Template Member Functions

Notice that member function de�nitions for class templates are preceded by the
template keyword with <class T>, but are otherwise analogous to ordinary member
function de�nitions.

template<class T>

Array<T>::Array(int n) {

num_elts = n;

ptr_to_data = new T[n];

}

template<class T>

Array<T>::Array() {

num_elts = 0;

ptr_to_data = 0;

}

template<class T>

Array<T>::Array(const Array<T>& a) {

48

num_elts = a.num_elts;

ptr_to_data = new T[num_elts];

copy(a); // Copy a's elements

}

template<class T>

void Array<T>::copy(const Array<T>& a) {

// Copy a's elements into the elements of *this

T* p = ptr_to_data + num_elts;

T* q = a.ptr_to_data + num_elts;

while (p > ptr_to_data) *--p = *--q;

}

template<class T>

Array<T>::~Array() {

delete [] ptr_to_data;

}

template<class T>

T& Array<T>::operator[](int i) {

#ifdef CHECKBOUNDS

if(i < 0 || i > num_elts)

error("out of bounds");

#endif

return ptr_to_data[i];

}

template<class T>

int Array<T>::numElts() {

return num_elts;

}

template<class T>

Array<T>& Array<T>::operator=(const Array<T>& rhs) {

if (ptr_to_data != rhs.ptr_to_data) {

setSize(rhs.num_elts);

copy(rhs);

}

return *this;

}

template<class T>

49

void Array<T>::setSize(int n) {

if (n != num_elts) {

delete [] ptr_to_data; // Delete old elements,

num_elts = n; // set new count,

ptr_to_data = new T[n]; // and allocate new elements

}

}

template<class T>

Array<T>& Array<T>::operator=(T rhs) {

T* p = ptr_to_data + num_elts;

while (p > ptr_to_data) *--p = rhs;

return *this;

}

We can see from the main() program how templates are instanced. Array<float> x(n)

is an instance of the template. Here T has become float.
Comments on Templates

1. No code is generated for a template. Code is generated after the template is con-
verted into a concrete class or function. Thus the .cc source �le is almost never
associated with a template class. The entire template class de�nition, including all
the member functions, should be contained in the .h include �le so that it can be
available for the compiler to expand.

If you do decide to put the template declarations in a .h �le and the template
de�nitions in a .cc �le, then put #include "Array.cc" at the very bottom of the
Array.h �le and in the Array.cc �le, remove #include "Array.h". Don't try to
compile Array.cc. Just compile the rest of the source �les, like the �le with the
main program. The compiler will do the rest. (This works with g++, but I don't
guarantee it for other compilers.)

2. A template class does not consume any memory. But every instance of a template
class does take up memory.

3. A template class cannot be compiled and checked for errors until it has been con-
verted into a real class. Thus, a template class Array might compile �ne even
though it contains obvious syntax errors. The errors won't appear until a class
such as Array<float> x(n) is created. Even if an error does appear when instanc-
ing a template class, it does not necessarily mean the template class has a problem.
The problem may be in the instance itself.

50

Const in Classes

Class objects may be declared const in the same way as intrinsic types. Like an
intrinsic object, a user{de�ned object must be assigned a value when it is created. For
example, suppose we have de�ned a class Student where the constructor just requires
the student's name as an argument (Student::Student(char* name)). Then we could
say create a constant object in main:

const Student Michael("Michael");

A const object can't be changed after initialization. The compiler will declare an error
if you try to pass a const object to a function that might try to change the object.
One important use of const is to prevent bugs by safeguarding objects that you know
shouldn't be changed. Consider the following example which uses our Array template.
Recall that strings are arrays of chars.

char day0[]="Sunday";

Array<char>d(7);

int i;

for(i=0;i<7;i++)

d[i] = day0[i];

const Array<char>Day_zero=d; //const Array can't be changed after

//declaration. Notice that this

//calls the copy constructor.

Array<char>aday = Day_zero; //It's ok to set a nonconst object equal

//to a const one. Calls copy constructor.

aday[0] = Day_zero[0]; //Get compiler warning.

int n = Day_zero.numElts(); //Get compiler warning.

The problem is that Day_zero is declared const, but the operator[]() and the func-
tion numElts() are not declared const. In particular, these functions take nonconstant
arguments, so the compiler is worried that the functions might change the const Array.
So we need to change the de�nitions.

template<class T> // T="type",e.g.,int or float

class Array {

public:

Array(int n); // Create array of n elements

Array(); // Create array of 0 elements

Array(const Array<T>&); // Copy array

~Array(); // Destroy array

51

T& operator[](int i); // Subscripting

//******************** Note the word "const"*************************

int numElts() const; // Number of elements

const T& operator[](int i) const; // Subscripting

//***

Array<T>& operator=(const Array<T>&); // Array assignment

Array<T>& operator=(T); // Scalar assignment

void setSize(int n); // Change size

private:

int num_elts; // Number of elements

T* ptr_to_data; // Pointer to built-in array of elements

void copy(const Array<T>& a); // Copy in elements of a

};

// Function definitions

template<class T>

int Array<T>::numElts() const{

return num_elts;

}

// New subscript operator, returns const T

template <class T>

const T & Array <T>::operator[](int i) const

{ return ptr_to_data[i]; }

// Old supscript operator, not const

template <class T>

T & Array <T>::operator[] (int i)

{ return ptr_to_data[i]; }

When we put const after a function declaration, as in

int numElts() const

we don't mean that this function can't change. We mean that this is a function that can't
change the class object that it belongs to. This is in contrast to a nonconst function
which can change the object it belongs to. You can pass a const function nonconstant
arguments, especially since these arguments often do not refer to *this object. If these
arguments are not to be changed, then declare them const:

void fn(const Array& A2);

52

When const appears in front of a function declaration, we mean that it returns a const

value or reference. For example, the �rst const in

const T& operator[](int i) const;

means that the subscripted variable returns a reference to a const object. The compiler
is smart enough to choose between the const and nonconstant operator function:

const T& operator[](int i) const;

T& operator[](int i);

It chooses according to whether the current object is constant or not. This is a case of
operator overloading. You can also overload functions with respect to the constness of
their explicit arguments. Thus, the following two functions are not ambiguous:

void fn(Array& A); //used for non-const objects

void fn(const Array& A); //used for const objects

Another solution to our problem is to write

T operator[](int i) const; //does not return a reference

T & operator[](int i); //returns a reference

Notice that T operator[](int i) const does not return a reference. Rather it returns
the value of the ith element of the array, so that the ith element can't be changed and is
kept const. T & operator[](int i) returns a reference that can later be changed.

Why bother with const? Because it is a good way to safeguard your program and
keep out bugs. Recall that the external function

void fn(Array A);

is safe in that it can't overwrite the Array object because it's passed a copy of A. But
suppose Array A is maintained in a large relational database so that making a copy
requires a lot of time and e�ort. In that case it's easier to pass a reference to Array A,
thus enhancing the e�ciency of your program. So you write

void fn(Array& A);

But now there's the danger that fn() will overwrite Array A. Even if you think that
fn() doesn't change Array A, when debug time comes, you can't exclude the possibility.
So you write

void fn(const Array& A);

53

So the moral of the story is that you should put in const wherever you can. If you know
that the member function doesn't change *this, i.e., the object of the class to which it
belongs, add const to the end of the declaration.

(By the way, you only put const at the end of a declaration of a function that's a
member of a class. It doesn't make sense to put it at the end of the declaration of an
external function.)

Template Functions

We have seen how classes can be made into templates. You can also have templates
for functions that are not members of classes. For example:

#include <iostream.h>

template <class T>

T MAX(T num1, T num2) //template function

{

return (num1 > num2 ? num1 : num2);

}

template <class T>

T SQR(T num) //template function

{

return (num * num);

}

int main()

{

float x, y, z1, z2, z3;

long m;

cin >> x >> y;

z1 = MAX(x,y);

z2 = SQR(x+y);

cout << z1 <<" "<< z2 << endl;

cin >> m;

z3 = MAX(m,x); //won't work, template won't convert

//argument types

return 0;

}

You can also use template functions with user-de�ned types (classes), as long as the
operators in the template function make sense for the class. For example if you wanted
to use MAX with Student, the \less than" symbol (<) would have to be de�ned in the
class Student.

54

In C one can de�ne macros that act like template functions, but macros are more
error prone. For example if you wrote:

#define sqr(x) (x*x)

func(float x, float y, float z)

{

z = sqr(x + y); //z=x+y*x+y=x+(y*x)+y due to operator

//precedence

cout << z << endl;

}

In addition, macros don't provide type checking.

55

