LECTURE 3

Classes

C++ is an object-oriented language. It’s based on classes. To define a class is to
define a new type (like an int or a double) which you can then use just like it was
built into the language. A class should embody some conceptual or mathematical object.
Choosing which classes to make is the most important part of designing a C++ program.
It is an art that can be learned.

When you make a class, you bury the details inside the class that you don’t want to
think about everytime you use it. You use the class in a high level way.

Let me give an analogy. (This is from C++ for Dummies by Stephen Davis.) Suppose
you want to make nachos one night. So you dump some chips on a plate, throw on some
beans, cheese, and jalapenos, and nuke the mess in the microwave oven for a few minutes.
To use the microwave, you open the door, throw the stuff in, and punch a few buttons on
the front. After a few minutes, the nachos are done. Notice that you don’t look inside
the case of the microwave or try to rewire it. You don’t have to reprogram the software to
use the microwave everytime you cook a different dish. The microwave has an interface
consisting of a front panel with all the buttons you need to push. You work at a certain
level of detail where you don’t have to worry about the inner workings of the microwave.
The level of detail at which you are working is called the level of abstraction. We can
say that the microwave oven allows us to abstract away the details of the microwave’s
internals. The microwave oven is like a class in C++.

Let’s compare and contrast the functional programming approach (what you do in C
and Fortran) with the object—oriented approach (C++). In a functional programming
approach to making nachos, a flow chart of the program would show the program going
from your finger to the front panel and then to the internals of the microwave. Pretty
soon, flow would be wiggling around through complex logic paths about how long to turn
on the Klystron and whether to sound the “come and get it” tone.

In an object—oriented approach to making nachos, you would first identify the types of
objects in the problem: chips, beans, cheese and an oven. These are the analogs of basic
classes. Then you would begin the task of modeling these objects in software, without
regard to how they will be used in the final program. If you work at the level of basic
objects, you think about making a useful oven, and not about making some specific snack
like nachos. At the next level of abstraction you make nachos.

In object—oriented computerese, your microwave is an instance of the class microwave.
The class microwave is a subclass of the class oven, which in turn is a subclass of the
class kitchen appliances.

Classes can get extremely complicated, but let’s start with simple examples of math-
ematical objects: “a point in a plane” and “a line in a plane”. (see Chapter 4 of Barton
and Nackman)

Definition of class Point

25

// This is the file Point.

h

typedef double Real; //This means that Real is a synonym for double.

class Line; //Declaration of class Line, which has not

//
//
//

class Point{
public: //
//
//
Point(); //
//
//
//
Point(Real x, Real y); //
//
Real distance(Point p); //
//
//
Real distance(Line L); //
//
Real x(); //
Real y(); //
private: //
Real xc; //
Real yc; //
}; //

yet been defined. But we need to tell
class Point that it exists because
class Point uses it.

"public" means accessible to the outside
world, i.e., the parts
of the program outside this class.

Declare a function Point() with no
arguments. This is actually a special
function called a class constructor

that creates an object of the class Point.

Constructor that creates an object using
the values x and y.

Member function that computes the distance
to another point from this point. It

returns a Real.

Member function that computes the distance
to a line.

Get x-coordinate of point.

Get y-coordinate of point.
Accessible only to class objects.
x-coordinate.

y-coordinate.
Only place a ";" follows a bracket "}"

Use of class Point

#include <iostream.h>
#include '"point.h"

26

void main()

{

Point origin(0.,0.); //call constructor of Point

Real x, y;

cin >> x >> y;

Point p(x,y); //call constructor of Point

cout << origin.distance(p) << endl; //distance to point p from origin
}

An “object” is a specific instance or realization of a class. origin and p are objects of the
class Point. The period “.” in origin.distance(p) is a class member access operator.
This is origin’s distance function. It is similar in form to origin.distance(Line L).
C++ decides on the basis of the arguments type which function to call. This is called
function overloading.
Private versus Public
Consider the following:

main ()
{
Point p;
cout << p.xc << endl; //Error: can’t access private data members

}

This would be ok if xc and yc were declared in the public sector. Why use private?
So no one can corrupt your data members. Private members represent the internal
workings of the class. Public members, on the other hand, represent the interface of the
class with the rest of the world. It’s a good idea to hide the details of the class in private
so that when you want to change those details, it’s less likely to require changes in the
way the class is used in external applications. An example of internal details would be
the way the data is stored. For example the coordinates of a point could be stored in
Cartesian coordinates or in polar coodinates. Private is the default. So we could define
the class Point as follows:

class Point{

Real xc; //Private data member

Real yc; //Private data member
Public:

Point();

27

A point with 2 data members (double xc, double yc) is stored as 2 x 8 = 16 bytes.
Functions take no memory other than in the executable code
class Line

class Line
{
public:
Line(Point pl, Point p2); //Line through 2 points
Line(Point p, Real xdir, Real ydir);
// Line through p with tangent (x,y)
Point intersect(Line line);
Real distance(Point p);
static Real parallelism_tolerance;
private:
Real a; // ax + by + ¢ = 0
Real b;
Real c;

};

Use:

main()
{
Line L1(Point(0,0), Point(0,1));
Line L2(Point(1,2), 1,1);

point intersection = Ll.intersect(L2);
cout << "(" << intersection.x() << "," << intersection.y() << ")"
<< endl;

Definition of Member Functions
// This is the file point.cc

Point: :Point () // Scope resolution operator ::
{} //constructor does nothing

Point::Point(Real x, Real y)

{
XC=X; // Member function
// has access to private members
ye=ys
}

28

The : : is called the scope resolution operator because it indicates to which class a member
belongs. You also can use the :: operator with a non—member function as well as using
a null structure name. For example, if power (float x, float y) is a not a member of
any class and is declared globally, we could write : :power(float x, float y). This is
optional except when 2 functions of the same name exist. Then you need to specify if
you are calling the global function.

Class Constructors

A constructoris a member function that has the same name as the class. Point: :Point ()
and Point::Point(Real x, Real y) are constructors. The constructor is called auto-
matically when an object of its class is created. Its primary job is to initialize the object
to a legal initial value for the class. If an array is created, e.g. Point p[5], the default
constructor is called 5 times. The constructor has no return type, not even void. If you
don’t provide a constructor for a class, the C++ will automatically provide one for you.
It’s called the default, or void, constructor. The default constructor sets all the data mem-
bers of the object to binary zero. If your class already has a constructor, C++ doesn’t
provide the automatic default constructor. So if you define a constructor for your class,
but you also want a default constructor, you must define it yourself. Point: :Point () is
a default constructor. The default constructor is called when an array of objects is cre-
ated, so it’s a good idea to have a default constructor. Note that the compiler—supplied
default constructor won’t work if you have const or reference variables that need to be
initialized in the class.

Unlike other functions, you can’t call a constructor; it’s called automatically when
the object is created. Therefore, the only way to pass arguments to the constructor
is when the object is created. So the statement Point origin(0.,0.) in main calls
the constructor Point: :Point(Real x, Real y) and passes the values (0.,0.) to (z,y).
Point p(83.0,2.0) creates 16 bytes of space and calls this function. The declaration
Point p gets 16 bytes and calls the function Point (). Notice that in main, you write
Point p, not Point p(), in order to invoke the default constructor. If you write Point
p(Q in main, you are declaring a function that returns an object of class Point by value.
Note that a constructor should be a public member function because it will be called by
outside function like main.

Constructing a Data Member

Suppose you have a data member that itself is an object of a class. For example,

suppose you have

class Map

private:
Point irvine;

}

How does one initialize the Point irvine? In other words, how does one pass arguments
to the Point constructor?

29

The data members are constructed before the body of the Map constructor is entered.
So we can’t write

class Map
{
public:
Map(real x, real y)
{Point irvine(x,y);} //ERROR-don’t do this.
private:
Point irvine;

}

This would create the Point irvine twice; once before the body of the Map constructor
is entered and once after the body of the Map constructor is entered. The second one
disappears when the program returns from the Map constructor. We only want one irvine
constructed, and we want it to be the data member of Map.

The correct way to initialize a data member is as follows:

class Map

{

public:
Map(real x, real y):irvine(x,y)
{3

private:
Point irvine;

}

The “” means that what follows are calls to the constructors of data members of the
current class. To the C+4 compiler, this line reads, “Construct the member irvine
using the arguments x and y of the Point constructor.” We invoke this constructor as
follows:

main()

{
Map county_map(38.5,24.2);

}

If no values are given when a Map object is created, we can invoke default values by
writing the constructor as follows:

class Map

{
Map(real x=12.5, real y=18.0):irvine(x,y)
{}
private:
Point irvine;

3

30

where (x=12.5, y=18.0) are the default values. If no arguments are given, this con-
structor acts as a default constructor.

The “” syntax must also be used to assign values to const and reference type
members. For example:

class SillyClass
{
public:
SillyClass(int& i) :ten(10) ,refI(i)
{}
private:
const int ten;
int& refl;
+;

main()

{
int i;
SillyClass sc(i);
return O;

}

Point.cc Continued

Real Point::x()
{return xc;}
Real Point::y()
{return yc;?}

The distance to another point is simple too.

Real Point::distance(Point p)

{
Real xdif = xc - p.xc; // xc refers to the xc of "this" object
Real ydif = yc - p.yc; // p.yc refers to the yc of the other object p.

//Notice access of the private data member
//p.yc by another object of the same class.

return sqrt(xdifxxdif + ydif*ydif);

+
Real Point::distance(Line L)
{
return L.distance(*this); // Let Line do the work.

31

Real Line::distance(Point point)
{
//Returns the distance from point to the line.
return abs(a*point.x() + b*point.y() + c)/sqrt(a*a + b*b);
}

a, b and c are intialized in the constructors of Line which can be found on page 93 of
the textbook.

this is a pointer to the “current” object. For example, in pl.distance(L), this is
a pointer to &pl. You don’t have to write

Point * const this = &pl;

because the compiler already has done it for you. Above, in the expression xdif = xc -
p.xc, we could have written xdif = (*this).xc - p.xc. The (*¥this) .xc notation is
awkward, so there is another notation that means the same thing:

this -> xc

In general, use -> to access a data member or a member function associated with a
pointer to a class. For example, if a class (say Line) has a member function £(s) or a
data member a, then

Real v;

Line *LL; // LL is a pointer to a Line object.

v = LL -> a; // LL->a accesses the data member "a" of the
// class object pointed to by LL. This is the
// same as (*LL).a

LL > f(s); // Calls the function f(s) which is a member of

// object pointed to by LL. This is the same as
// (¥LL) .f(s).

Static Members of a Class

A static variable in a class is shared by all the objects created with that class type.
For example, if you have a class student, the number of students in the course would be a
static variable that is the same for all objects of the class. The number of students is the
number of objects of the class. The access rules for static members are the same as the
access rules for normal members. From within the class, static members are referenced
like any other class member. Public static members can be referenced from outside the
class as well. A static data member is associated with a class and not with any particular
object of that class. So a reference to a static member function does not require an object.
If an object is present, only its type is used. Consider the following example:

32

class Student{

public:
Student () //Default constructor
{
no0fStudents++; //reference from inside the class
}

static int noOfStudents;
//other stuff
+s;

int Student: :no0fStudents=0; //Define and initialize static variables
//outside the class declaration.
//Notice the word "static'" is absent.

void fn(Student &s1, Student &s2)
{
//The following references from
//results.

cout << "Number of Students'" <<
cout << "Number of Students'" <<
cout << "Number of Students" <<

3

outside the class produce identical

s1.no0fStudents << endl;
s2.no0fStudents << endl;
Student: :no0fStudents << endl;

Note that static means something different from const. Static variables can change
as the program progresses. You can use static members to keep count of the number of
objects floating around. A static variable can also be used as a flag to indicate whether
a particular action has occurred. Finally, a very common use for static members is to
contain the pointer to the first member of a linked list.

Static variables must be defined outside the declaration of the class. So if the class is
defined in a .h file, you should put the static variable definition in the .cc file.

// This is the file line.cc.

Real Line::parallism_tolerance=0.1;

Notice that the word static does not appear in the definition. parallism_tolerance

is used in the definition of intersect ():

Point Line::intersect(Line line) {

// Returns the point where this line intersects with another line.
// 1If the angle between the two lines is less than
// the parallelism_tolerance, return the point at infinity. The parallelism

// test computes the square of the

33

sin of the angle. We assume that the

// tolerance is small enough for sin(theta) to be
// approximately equal to theta.

Real det = a * line.b - line.a * b;
Real sinsq = (det * det)/((a*a + bxb) * (line.a*line.a + line.b*line.b));
if (sinsq < parallelism_tolerance * parallelism_tolerance) {
return Point (FLT_MAX, FLT_MAX);
// Point at infinity (FLT_MAX from float.h)

+
else {
return Point((b * line.c - line.b * c)/det,
(c * line.a - line.c * a)/det));
}

Static Member Functions
There are also static member functions, which are associated with a class and not
with any particular object of that class. This means that like a reference to a static data
member, a reference to a static member function does not require an object. If an object
is present, only its type is used. Consider the following example:

#include <iostream.h>
#include <string.h>
class Student

{
public:
Student () //Default constructor
{
no0fStudents++; //reference from inside the class
}
static int number ()
{
return no0OfStudents;
}
private:
static int noOfStudents;
char name[40];
//other stuff
};
int Student::no0fStudents=0; //Initialize static data member
int main()
{
Student s;

34

// The following calls produce identical results.
cout << s.number() << endl;

cout << Student::number() << endl;

return O;

}

Notice how the static member function can access the static data member. A static
member function is not directly associated with any object, however, so it does not have
default access to any non-static members. Thus, the following would not be legal:

class Student
{
public:
//The follwing is not legal
static char #*sName ()
{return name;} //which name? There is no object.
//other stuff ...

private:
char name[40];
static int noOfStudents;

};

That is not to say that static member functions have no access to non—static data mem-
bers. For example, a static member function could be used to search through a linked
list of objects of the class. Consider the following:

#include <iostream.h>
#include <string.h>
class Student
{
public:
Student (char *pName = '"no name") //constructor
//("no name" is default value)

{

strcpy(name, pName);
no0fStudents++;
}
“Student () //destructor (see Lecture 4)
{
no0fStudents--;
+

//findName - return student with specified name

35

static Student *findname(char *pName) ;
private:
static int noOfStudents;
static Student *pFirst;
Student *pNext;
char name[40];

};
int Student::no0fStudents=0; //Initialize static data member
Student* Student::pFirst=0; //Initialize static data member

//findName- return student with specified name.

// Return zero if no match.
Student* Student::findName (char xpName)
{

//loop through linked list...
for(Student *pS=pFirst; pS; pS = pS->pNext)
{

//if we find the specified name...

if (strcmp(pS->name, pName) == 0)

{
//then return the object’s address
return pS;
}
}
//otherwise, return a zero (item not found)
return (Student*)O0; //cast
}
int main()
{
Student s1("Randy");
Student s2("Jenny");
Student s3("Susy");
Student *pS = Student::findName("Jenny") ;
return O;
}

The function findName () has access to pFirst because it’s shared by all objects. Being
a member of classStudent, findName () has access also to name, but the call must specify
the object to use (that is, whose name). No default object is associated with a static
member function. Calling the static member function with an object doesn’t help. For
example:

36

//...same as before...
int main()

Student s1("Randy");

Student s2("Jenny");

Student s3("Susy");

Student *pS = sl.findName("Jenny");
return O;

}

The s1 is not evaluated and not passed to findName (). Only its class is used to decide
which findName () to call.

37

