
Physics 131/231: Simulations in C++

Prof. Clare Yu

email: cyu@moses.ps.uci.edu

phone: 949-824-6216

O�ce: 2168 FRH

Winter 2000

These notes draw material from the notes of Prof. Steve White, from Barton and
Nackman's book Scienti�c and Engineering C++, and from C++ for Dummies by
Stephen R. Davis.

LECTURE 1
Discuss Syllabus.
Project possibilities: Matrices of complex numbers, arbitrary precision arithmetic,

data analysis, experiment control, �nite elements, solve di�erential equations, plotting
library (see web pages listed in syllabus for ideas and projects done by previous classes).

Misc: To obtain an account on Linux machines in computer lab (1002 FRH), see
Tory Graziano in 480 Rowland Hall, pscsg@mail.ps.uci.edu, 824-6377. You can do the
homework on any machine. If you use a Linux workstation, use the g++ compiler. Get
key card to the computer lab from Jim Geier in Physics Department o�ce. The machines
are called frh1002x.ps.uci.edu where x=1,2,3,4,5. For example, frh10021.ps.uci.edu is the
name of a machine. You can access them remotely using ssh; telnet will not work. Web
pages:In your account, there will be a directory called WWW. Anything you put in this
directory is accessible on the internet.

Reasons for learning C++

1. We can write better, bigger and more sophisticated programs.

(a) Better encapsulation{\Object oriented approach"

(b) Dramatic reduction in run{time bugs

(c) Code reuse

2. E�ciency:

(a) Memory e�ciency is much better.

(b) Speed: Can be as good as Fortran (and much better than other things)

3. Good for getting jobs outside of physics

Problems with C++

1. It's harder to learn.

2. A fast program takes e�ort.

3. C++'s most elegant features tend to be rather ine�cient.

4. Not speci�cally designed for physics{need to make your own libraries

Basic Elements of C++ (Fortran Perspective)
Simplest program: hello.cc

#include <iostream.h>

int main()

{

cout<<"hello world"<<endl;

return 0;

}

Or we could have written

#include <iostream.h>

void main()

{

cout<<"hello world"<<endl;

}

Here void main means nothing is returned, even though something is done.
To compile this program:

g++ hello.cc

This gives the executable a.out. If you want the executable to be hello, then type

g++ hello.cc -o hello

To get more information on g++, type man g++.
Everything in C and C++ are functions. The main program main is called like a

function.
Syntax: Brackets fg group lines. Each line ends with a semicolon \;". Usually there

is no semicolon after brackets fg (except for a class). In fortran each line ends when
you hit <return> and you continue lines with a character in the 6th column. In fortran

2

every new line must be indented by at least 7 columns. In C and C++, you don't have
to indent lines.

#include <iostream> means read in the �le iostream here. The # sign indicates
that the statement is a preprocessor command. Conceptually, the preprocessor is the
�rst step in compilation. We will discuss preprocessor commands as they arise. < >

means look for the �le in the standard places.
cout is de�ned in the �le iostream.h as an iostream. It represents standard output

and writes to the screen. << is read as an arrow pointing out. endl means make a new
line and ush the �le from the bu�er. return 0 means standard return when everything
is �ne.

Input and output of numbers:

double a,b; //or could write float

cin >> a >> b;

cout << "a=" << a << ", b=" << b << endl;

cin is a way of reading numbers in that have been entered from the keyboard.
Things which are similar in Fortran, C, and C++

Types

Fortran C, C++

integer int (16 or 32 bits)

integer*8 (8 bytes) (1 byte=8 bits) long or long int (32 or 64 bits)

integer*4 short or short int (16 or 32 bits)

integer*2

character*1 char (8 bits)

real float (32 bits)

real*8 double (64 bits)

real*16 (not on many machines) long double (128 bits)

complex defined in library: Complex

character*20 char a[20]; or use "string" library

logical int (or 1 byte) (0 or 1)

Arrays

Real A(10) has elements float a[10]; has elements from

from A(1) to A(10) a[0] to a[9]

Real A(10,10) is 2D array float a[10][10]; // [row][col]

3

To initialize arrays in C:

int a[5]={0,2,18,12,5};

float b[2][4]={{23.0, 1.3, 22.2, 0.2},

{0.24, 4.1, 12.0, 9.7}};

Comparisons

x.lt.y x < y

x.le.y x <= y

x.eq.y x == y

x.gt.y x > y

x.ge.y x >= y

x.ne.y x != y

Logical expressions

.false. 0

.true. nonzero, 1

.not.x !x

x.and.y x && y

x.or.y x || y (inclusive or)

Arithmetic operations: +, -, *, / mean the same in fortran, C and C++. But in
fortran x

y is written as x**y, while in C and C++, x**y means nothing. One often uses
pow(x,y) from the math.h library.

Conditional Statements

if() then if(x<0)

...... {

endif }

Style statement: No fg are needed if there is only one statement.

if(x<0.0)

x=0.0;

fg make a group of statements look like a single statement.
Else Statements

if()

{...

}

else if(...)

4

{

}

else

{

}

Nested if statements

if()

{

if()

{ }

else { }

}

As an example, let's implement the fabs() function:

float fabs(float x) //A function has () after its name.

{

float y;

if(x<0.0)

y = -x;

else

y = x;

return y;

}

Another way to write this is

float x,y;

y = (x<0.0)? -x : x;

return y;

In y = expr1 ? expr2 : expr3, expression expr1 is evaluated �rst. If it is true
(nonzero), y is set equal to expr2. If it is false (expr1 = 0), y = expr3.

Switch
The switch statement is a multi{way decision that tests whether an expression

matches one of a number of constant integer values, and branches accordingly. The
syntax is as follows:

switch (expression) {

case const-expression: statements

case const-expression: statements

default: statements

}

5

Each case is labeled by one or more integer{valued constants or constant expressions.
If a case matches the expression value, the execution starts at that case. All case ex-
pressions must be di�erent. The case labeled default is executed if none of the other
cases are satis�ed. A default is optional; if it isn't there and if none of the cases match,
no action at all takes place. Cases and the default clause can occur in any order. For
example

int i, j;

cin >> i;

switch(i) {

case 1:

j=i;

case 2: //if i=2 or 3, then j=i+5

case 3:

j=i+5;

default:

break;

}

The break statement causes an intermediate exit from the switch. After the code
for one case is done, execution falls through to the next case unless you take explicit
action to escape. break and return are the most common ways to leave a switch.

While loops

while(expression)

statement

The expression is evaluated. If it is nonzero, statement is executed and expression is re{
evaluated. This cycle continues until expression becomes zero, at which point execution
resumes after statement.

Do{While loops

do

statement

while (expression);

The statement is executed, then the expression is evaluated. If it is true, the statement

is evaluated again, and so on. When the expression becomes false, the loop terminates.
Do Statement/ For loop

In fortran, the do loop has the form

do i=1,10

.....

enddo

6

In C and C++, we would write

for(i=1;i<=10;i++) // i++ is the same as i=i+1

.....

(Comment follows //. \//" is equivalent to \!" in Fortran or \/*...*/" in C.) The for
statement is equivalent to

i=1;

while(i<=10)

{

....

i++; // i++ means i=i+1

}

Common Blocks vs. external variables
In fortran we denote a common block by

common /x/ a,b, ...

In C and C++, anything de�ned outside a function is global, unless declared other-
wise.

int a;

void func1()

{

a=2;

}

void func2()

{

cout << a << endl;

}

Here these are all the same a.
A variable de�ned inside a function is local to the function, and no other function

can have direct access to it. Each local variable in a function comes into existence when
a function is called, and disappears when the function is exited. External variables are
globally accessible by all functions, and they exist permanently, rather than appearing
and disappearing as functions are called and exited. Suppose our program consists of
several �les with some functions in �lea.cc, other functions in �leb.cc, and still other
functions in �lec.cc. How can we have variables that are global to the functions in �lea.cc
and �leb.cc but not in �lec.cc? That's what the extern declaration is for. Suppose we
want aa to be global to �lea.cc and �leb.cc. Then we would de�ne aa outside of any
function in one �le, say �lea.cc, and then put an extern declaration in �leb.cc. One can
either put the extern declaration at the top of �leb.cc or in each function that requires

7

it in �leb.cc. Note that a variable can only be de�ned once in a program but it can be
declared more than once. A de�nition refers to the place where the variable is created or
assigned storage. A declaration refers to places where the nature of the variable is stated
but no storage is allocated. Our example would look something like this:

//****************************filea.cc***************************

float aa; //global definition of aa is outside of any function

int func1(){

aa=2;

...

}

float func2(){

aa=aa*3.0;

...

}

//**************************fileb.cc*****************************

extern float aa; // declaration of aa that indicates the

// definition of aa is elsewhere.

void func3(){

cout<<aa<<endl;

....

}

void func4(){

...

}

Or if we only want func3 to know about aa, we could write

//**************************fileb.cc*****************************

void func3(){

extern float aa; // declaration of aa that indicates the

// definition of aa is elsewhere.

}

void func4(){

float aa; // here aa is local to func4() and is not the

8

// same as the global variable aa.

...

}

Built{in types that are not in Fortran:
Enumerations

enum Color {red, pink, blue};

Color c = blue;

Each color actually denotes an integer. By default, the count starts at 0.

enum Color {red=0, pink=1, blue=2} //default

But you can specify some other numbering scheme:

enum Color {red=5, pink=7, blue} //In this case, blue=8.

It is legal to go from enum to int. int i = pink; is legal. But it is not legal to go
from int to enum. Color c = blue + 1; is not legal because there are more integers
than Colors.

(By the way, C and C++ are sensitive to upper and lower case, while Fortran is not
case sensitive.)

New arithmetic operations in C and C++:
There is a nice shorthand involving +=, -=, *=, /=. For example, a=a+b becomes

a += b and a=a*c becomes a *= c.
Increment:
i++ is the same as i=i+1

i-- is the same as i=i-1.

++ and -- may be used either as pre�x operators (before the variable, as in ++n), or
post�x operators (after the variable: n++). In both cases, the e�ect is to increment n by
1. But the expression ++n increments n before its value is used, while n++ increments n
after its value has been used. For example,

n=5;

x=n++;

sets x to 5 and n to 6. But

n=5;

x=++n;

sets both x and n to 6. Increment and decrement operators can only be applied to
variables; and an expression like (i+j)++ is illegal.

Assignments using = signs return values, namely a new left side: a=(i=4)+2 sets a to
6.

Modulo i % j = modulus = remainder. For example, 5 % 3 = 2, 20 % 7 = 6, etc.
Bit Operators

9

~i bit by bit "not", switches 0 to 1 and 1 to 0

i & j "AND"

i ^ j exclusive "OR" 1^1 yields 0

i | j inclusive "OR" 1 | 1 yields 1

operator i j i operator j

~ 001 110

& 011 110 010 (Both have to be 1 to get 1)

^ 011 110 101

| 011 110 111

<< left shifts bits. For example, 1 << 2 = 4 since 4 is written 100 in binary. The 2

tells how far to shift the 1 bit.
>> right shifts bits. For example, 4 >> 2 = 1.
Octal constants are preceded by 0 (zero): 030 = 24 since 3 x 8 = 24. Hexadecimal

constants are a sequence of digits preceded by 0x. For example, 0x10 = 16.
Unsigned type such as unsigned int means that all the bits go into numbers, and

none of the bits is used to designate a sign. This gives more bits to be used for numbers.
Characters and Strings

A single quoted letter is a constant for one character. 'a' means one character, the
letter a.

char c = 'X'; //defines c and initializes it.

c='y'; //reassigns c.

Special characters:

'\n' = newline

'\t' = tab

etc.

Literally a char is a byte{size integer. 'a' means \ascii code for a as a byte{sized
integer."

cout << 'a' << (int)('a') << endl;

yields a97 because 97 is the code for a. Here's how you can print out the ascii code for
the alphabet:

for(char c = 'A'; c <= 'z'; c ++)

cout << c << " " << (int)c << endl;

10

(Try it!).
Cast In the above example (int)c is an example of using the cast operator. Even

though c is of type char, writing (int)c forces a type conversion into an int. c isn't
converted into an int, but the expression (int)c delivers the integer value of c. In
general, a cast construction has the form

(type-name) expression

Here the value of expression is converted to the named type, even though expression

itself is not actually altered.
A string is an array of chars.

char s[20];

A string constant looks like this:

"A string" A s t r i n g \0

- - - - - - - - -

0 2 4 6 8

The array elements occupy slots 0 through 8. The array size usually is larger than the
string length. The last array element is a \0.

char s[]="A string"; //sets the length automatically

char s[20]="A string"; //sets s to A s t r i n g \0 \0 \0 \0 ...

To copy strings, treat them like arrays. So don't say

char s[20];

char t[20]="A string";

s=t;

(This makes s and t point to the same point in memory. We want to make 2 copies of
the same array that will occupy 2 di�erent places in memory.) Rather say

char s[20];

char t[20]="A string";

for(i=0;i<20;i++)

s[i]=t[i];

If we don't want to waste time copying all the \0's, we can write

char s[20];

char t[20]="A string";

i=0;

while (1)

11

{

s[i]=t[i];

i++;

if(t[i]=='\0')

break;

}

or

char s[20],t[20];

i=0;

while((s[i]=t[i]) != '\0')

i++;

\break;" tells the program to exit the innermost loop that it is inside of. If the program
doesn't break, then it continues with the next iteration.

Typedef
The typedef declaration gives an additional name to an existing type. For example,

typedef float distance;

Now distance is a synonym for float. We can write

distance d;

This can make the variables in a program easier to understand. Another use for typedef
is if you want to change the variable types in a program. You may want to do this to
suit machine{dependent data types, since di�erent machines can have di�erent numbers
of bytes for long, short, and int. So rather than change every line, you declare your
variables with a synonym and then just change the typedef statement. For example,
let's say you write

typedef long number;

number a;

number b;

number c;

Later, if you want to change all the number variables to be short, you just change the
typedef statement:

typedef short number;

number a;

number b;

number c;

This is much easier to change than if you had originally written

12

long a;

long b;

long c;

and then had to change each line to

short a;

short b;

short c;

13

