LECTURE 15
The Standard Library (STL)

We have been dealing with input and output streams which are classes in the standard
library. The standard library has many useful classes and features besides input and
output. These include classes for strings, lists, vectors, maps, complex numbers, etc.
Details can be found in Stroustrup’s book (Chapters 3, and 16-22). Before we talk about
the standard library, let me explain what a namespace is.

Namespaces

We have discussed the benefits of modular programming in which one divides up the
program into modules. Namespaces assist in doing this. Related data, functions, classes,
etc. can be grouped into separate namespaces. For example, a namespace declaration

would look like:

namespace Matricesq{
class 1DArray; //classes
class 2DArray;
1DArray operator +(const 1DArray& a, const 1DArray& b); //functions
2DArray operator +(const 2DArray& a, const 2DArray& b); //functions
ostream& display(const 1DArray& a); //functions
ostream& display(const 2DArray& a); //functions

¥

To refer to a member of this namespace, one uses the scope resolution operator, e.g.,
Matrices::display(a) and Matrices::1DArray.

The standard library is defined in a namespace called std. So if you refer to a type
(class) or function from the standard library, like string, you should write std: :string.
Including the Standard Library in Your Code

Every standard library facility is provided through some standard header similar to
<iostream> (notice the absence of “.h”). For example,

#include<string>
#include<list>

std::string s = "Four legs Good; two legs Baaaad!";
std::list<std::string> slogans;

Many of the classes in the standard library are template classes. For example, 1ist is a
template class. The standard library is sometimes called the standard template library
(STL).

Writing std:: as a prefix is a pain; so one can dump the names into the global
namespace in the following way:

#include<string> //make the standard string facilities accessible

165

using namespace std; //make std names available without std:: prefix

string s = "Ignorance is bliss!" //ok; sting is std::string

It is generally in poor taste to dump every name from a namespace into the global
namespace, because you run the risk of name clashes if you name a variable the same as
something in the standard library. You can dump the names from a namespace into a
local space, e.g., you could make the names local to a function:

#include<string> // complex number facility

std::string function()

{
using namespace std; //make std names available without std:: prefix
string s = "Ignorance is bliss!"; //ok; sting is std::string
//other stuff

b

(Actually many compilers like g++ just assume the standard library names are in the
global namespace, so you don’t have to write “using namespace std.” But this may
change as compilers are upgraded.)

As we mentioned earlier, the iostream classes are in the standard library. So we could
write,

#include<iostream>

std::cout << "hello! \n";

We have just been writing cout because we included iostream.h. In some cases, such as
iostream, by including <X.h> rather than <X>, we make the std names global. iostream
and fstream are examples of this. So are headers in the C standard library. A standard
header with a name starting with the letter c is equivalent to a header in the C standard
library. For every header <cX> defining names in the std namespace, there is a header
<X.h> defining the same names in the global namespace. For example, the standard
math library facility <cmath> corresponds to the C library <math.h>. We can write

#include<cmath>

void main(){

float x=2;

float a;

a = std::pow(x,4);
}

or we can dump the names in the global namespace:

166

#include<math.h>

void main(){

float x=2;

float a;

a = pow(x,4); //ok; refers to std::pow
}

By the way, blank spaces matter in include statements. For example, the following
will not work:

#include< iostream.h >

The standard library has facilities that deal with
input-output (e.g., <iostream>)
strings (e.g., <string>)
containers (e.g., <vector>, <list>, <map>, etc.)
iterators move and search through the containers

algorithms do things like copy, sort, find the occurrence of an argument, loop through
a collection of elements and perform a function on each one

numerics (e.g., complex numbers, numeric vectors and operations on them, random
numbers, standard mathematical functions)

A list of the facilities of the standard library can be found in Chapter 16 of Stroustrup.
There are entire books written on the standard library. We don’t have the time to
examine the standard library in detail. (There are entire books written on the standard
library.) But I want you to be aware of its existence. Let us give some brief examples of
these facilities. (We will drop the std:: prefix for convenience.)
Strings

The standard library provides a string type to complement the string literals (char*)
used earlier. The string class provides a variety of useful string operations, such as
concatenation of strings with the + sign. For example:

#include <string>

"Hello";
"world";

string sl
string s2

void func()

{

167

string s3 = s1 + "," + s2 + "I\n";
cout << 83;

}

s3 is initialized to Hello, world! followed by a newline. For strings, addition means
concatenation. You can add strings, string literals, and characters to a string.

In many applications, the most common form of concatenation is adding something
to the end of a string. This is directly supported by the += operation. For example:

#include <string>

void func(string& s1, string& s2)
{

sl = sl + ’\n’; //append newline
s2 += ’\n’; //append newline

}

These two ways of adding to the end of a string are semantically equivalent.
Naturally, strings can be compared against each other and against string literals.
For example

#include <string>
string password;

void respond(const string& answer)

{

if (answer==password)
{ // do something}

else if (answer=="yes")
{ // do something else}
}

The string class also provides the ability to manipulate substrings. For example,

#include <string>
string name = "George Washington";

void func()

{
string s = name.substr(7,10); //s = "Washington"
name.replace(0,6,"Mrs. Martha"); //name becomes "Mrs. Martha Washington"

3

168

The substr() operation returns a string that is a copy of the substring indicated by its
arguments. The first argument is the position of the first letter of the substring, and the
second argument is the length of the substring. Since indexing starts from 0, s gets the
value of ”Washington”.

The replace operation replaces a substring with a value. In this case the substring
starting at 0 with length 6 is George; it is replaced by Mrs. Martha. Thus the final
value of name is Mrs. Martha Washington. Note that the replacement string need not
be the same size as the substring that it is replacing.

Math

The standard library has a mathematical component to it that supports complex num-
bers, vector arithmetic, mathematical functions, etc. Details can be found in Stroustrup,
Chapter 22.

Complex Numbers

A complex number has the form a + ¢b where a and b are real numbers. They could
be floats or doubles, etc. So the complex numbers are a templated class that allows
you to choose.

#include<complex>

template<class scalar>
class complex

{
public:
complex(scalar re, scalar im);
/] ...

};

The usual arithmetic operations and the most common mathematical functions are sup-
ported for complex numbers. For example:

#include<complex>

template<class C>
complex<C> pow(const complex<C>&, int); //raise complex number to a power

template<class C>
complex<C> cosh(const complex<C>&); //cosh

void f(complex<float> fl, complex<double> db)
{
complex<long double> 1d = fl + sqrt(db);
db += f1x*3;
fl = pow(1/£1,2);

169

/l ...
}

More details can be found in Stroustrup, section 22.5.
Vector Arithmetic
Vectors are used all the time in physics. <valarray> supports vector arithmetic. For
example,

#include<valarray>

template<class T>
class valarray

{ 77 ...
T& operator[] (size_t);
/...
}

The type size_t is the unsigned integer type that the implementation uses for array
indices.

The usual arithmetic operations and the most common mathematical functions are
supported for <valarray>s. For example:

#include<valarray>

template<class T>
valarray<T> abs(const valarray<T>&); // absolute value

void func(valarray<double>& al, valarray<double>& a2)
{

valarray<double> a = al * 3.14 + a2/al;

a2 += al x 3.14;

a = abs(a);

double d = a2[7];

//
}

More details can be found in Stroustrup, section 22.4.
Containers
Much computing involves creating collections of objects and then manipulating such
collections. A class whose main purpose is holding objects is called a container or a
container class. An example of a container is the linked list that we studied earlier in
a homework problem. The standard library has container classes such as vector, list,
map, etc.

Container share the notion of a sequence. We can represent a sequence graphically
like this:

170

beginning end
\

— — —_ ., .= —_ : elements

A sequence has a beginning and an end. An iterator is sort of like a pointer to an element.
An iterator refers to an element and provides an operation that makes the iterator refer
to the next element of the sequence. The end of a sequence is an iterator that refers
one beyond the last element of the sequence. The physical representation of “the end”
may be a sentinel element (e.g. >\0’ which ends char* strings), but it doesn’t have to
be. We need some standard notation for operations such as “access an element through
an iterator” and “make the iterator refer to the next element.” The obvious choices
(once you get the idea) are to use the dereference operator * to mean “access an element
through an iterator” and the increment operator ++ to mean “make the iterator refer to
the next element.”

Let’s examine some of the container classes:

Vector

A built-in array has a fixed size and it’s not easy to change the size. For example,
recall the class Point that we dealt with in lecture 3. If we make an array of Points by
writing

class Point;
Point pts[100];

then it’s hard to resize the array pts later in the program. The standard library provides
a templated vector class to take care of that:

#include <vector>

class Point;

vector<Point> pts(100); //Note use of parentheses

void display(int i) //simple use; exactly as for an array
{ cout << pts[i].x() << endl; } // Print x-coordinate

void add_entries(int n) //increase size by n
{ pts.resize(pts.size() + n); }

The vector member function size() gives the number of elements. Note the use of
parentheses in the definition of pts. We made a single object of type vector<Point>
and supplied its initial size as an initializer. This is very different from declaring a built-in
array:

vector<Point> point(1000); //vector with 1000 points
vector<Point> points[1000]; //1000 empty vectors

171

Should you make the mistake of using [] where you meant () when declaring a vector,
your compiler will almost certainly catch the mistake and issue an error message when
you try to use the vector.

A vector is a single object that can be assigned. In other words, the assignment
operator for vector has been overloaded. For example:

#include <vector>

class Point;
vector<Point> pts(100);

void func(vector<Point>& v)
{
vector<Point> v2 = pts;
v = Vv2;
/...
}

Assigning a vector involves copying its elements. Thus, after initialization and assign-
ment in func, v and v2 each holds a separate copy of every Point in pts. When a
vector holds many elements, such innocent—-looking assignments and initializations can
be prohibitively expensive. Where copying is undesirable, references or pointers should
be used. Or one can use reference counting as we described in lecture 13.

Example of Using Standard Classes as Base Classes: Bounds Checking

We can use the standard library classes as base classes, i.e., we can write our own
classes that are derived from the standard library classes. As an example of this, we can
derive a class from vector that provides bounds checking. The standard library vector
does not provide bounds checking by default. Suppose we write

#include <vector>

class Point;
vector<Point> pts(100);
void func()
{ double xx = pts[101].x(); } // 101 is out of bounds

The initialization of xx will likely give some garbage value to xx rather than giving
an error. This is undesirable, so we can make a derived class Vec that will do bounds
checking. A Vec is like a vector, except that it throws an exception of type out_of_range
if a subscript is out of bounds.

#include <vector>

template<class T>

172

class Vec: public vector<T> //Vec is derived from vector
{
public:
Vec() : vector<T>() {}
Vec(int s) : vector<T>(s) {}

T& operator[] (int i) {return at(i);} //bounds checked
const T& operator[](int i) const {return at(i);} //bounds checked

+;

The at() operation is a vector subscript operation that throws an exception of type
out_of_range if its argument is out of the vector’s range. Notice that Vec is derived
from vector. We use Vec in exactly the same way as we used vector.

#include <vector>

class Point;

Vec<Point> pts(100);

void display(int i) //simple use; exactly as for a vector
{ cout << pts[i].x() << endl; } // Print x-coordinate

An out of bounds request will throw an exception that the user can catch. For example:

void f()
{
try
{
for(int i=0; i<1000; i++)
display(i);
+
catch(out_of_range)
{
cout << "range error\n'";
+
+

List
A 1list is another container of objects. When creating a list object, it has the
similar syntax to vector’s:

#include <list>

class Point;
list<Point> pts;

173

It differs from a vector in a few respects. For example, it is easier to add and delete
entries from a list than from a vector. When we use a list, we tend not to access
elements using subscripting the way we commonly do for vectors. Instead, we might
search a list looking for an element with a given value. To do this, we take advantage of
the fact that a 1ist is a sequence as we described earlier. Recall that a sequence has an
iterator to refer to an element and provides an operation that makes the iterator refer
to the next element of the sequence. The dereference operator * is used to “access an
element through an iterator” and the increment operator ++ is used to “make the iterator
refer to the next element.”

#include <list>

class Point;
list<Point> pts;

void print_point(const float& xx, const float& yy)
{

typedef list<Point>::const_iterator LI;

for (LI i=pts.begin(); i != pts.end(); ++i)

{
Point& p = *i; //reference used as shorthand
if((xx == p.x0)) && (yy == p.y0))

cout << p.x() << 7 7 K< p.y() << ’\n’;

}

The search for the point with the coordinates (xx,yy) starts at the beginning of the list
and proceeds until either (xx,yy) are found or the end is reached. Every standard library
container provides the functions begin() and end (), which return an iterator to the first
and to one—past—the—last element, respectively. Given an iterator i, the next element is
++i. Given an iterator i, the element it refers to is *i.

A user need not know the exact type of the iterator for a standard container. That
iterator type is part of the definition of the container and can be referred to by name.
When we don’t need to modify an element of the container, const_iterator is the type
we want. Otherwise, we use the plain iterator type.

Adding elements to a list is easy:

void add_point(Point& p, list<Point>::iterator i)

{

pts.push_front (p); //add at beginning

pts.push_back(p); //add at end

pts.insert(i,p); //add before the element ’i’ refers to
}

174

Map

Writing code to look up the coordinates of a point in a list of points is really quite
tedious. In addition, a linear search is quite inefficient for all but the shortest lists. (It’s
more efficient to use a tree—like structure to do a search. It’s how you look up a name
in the phone book. You open the book near the midpoint and go to the earlier or later
pages depending on whether what your want is before or after where you are at in the
phone book.) Other data structures directly support insertion, deletion, and searching
based on values. In particular, the standard library provides the map type. A map is a
container of pairs of values. For example:

#include <string>
#include <map>

class Point;
map<string,Point> California; // A city name paired with a point

Here we might imagine a map of California with points corresponding to cities. The
name of a city is a string. In other contexts, a map is known as an associative array or a
dictionary.

When indexed by a value of its first type (called the key) a map returns the corre-
sponding value of the second type (called the value or the mapped type). For example:

void print_city(const string& s)
{
if (Point i = Californials])
cout << § << 7 7 < i.x() << ", "< i.y() << endl;

3

If no match is found for the key s, a default value is returned from the map object. For
example, the default value for California could be 0. Then Point i is zero and the if
statement is false.

Each element in a map is a pair. The first element of a pair is called first, and
the second element is called second. For example, suppose we have a map that consists
of a sequence of (string,int) pairs. Then we could define a print function as follows:

#include <algo>
#include <string>
#include <map>
#include <iostream.h>

void print(const pair<const string,int>& r)
{ cout << r.first << r.second << ’\n’; }

int main()

175

{
map<string,int> histogram;
//initialize pairs...

for_each(histogram.begin() ,histogram.end(),print);
}

where for_each is an algorithm that applies the print function to every element of a
sequence, in this case, to every pair of a map.

The elements of a map are sorted in a particular order so that the less—than operation
is defined for its key types. For elements for which there is no obvious order or when
there is no need to keep the container sorted, one might consider using a hash map.

Comments on Standard Containers

A map, a list, and a vector can each be used to represent a collection of objects like
pts. However, each has strengths and weaknesses. For example, subscripting a vector
is cheap and easy. On the other hand, inserting an element between two elements tends
to be expensive. A list has exactly the opposite properties; it’s hard to subscript but
it’s easy to insert an element anywhere in the list. A map resembles a 1ist of (key, value)
pairs except that it is optimized for finding values based on keys.

The standard containers and their basic operations are designed to be similar from a
notational point of view. Furthermore, the meanings of the operations are equivalent for
the various containers. For example, push_back() can be used (reasonably efficiently)
to add elements to the end of a vector as well as for a 1ist, and every container has a
size () member function that returns its number of elements.

Algorithms

A data structure, such as a list or a vector, is not very useful on its own. To use one,
we need operations for basic access such as adding and removing elements. Furthermore,
we rarely just store objects in a container. Consequently, the standard library provides
the most common algorithms for containers in addition to providing the most common
container types. The algorithms are expressed in terms of sequences of elements. A
sequence is represented by a pair of iterators specifying the first element and the one—
beyond—the-last element. For example, the following sorts a vector and places a copy of
each unique vector element in a 1list:

#include <list>

#include <vector>

#include <algo>

void f(vector<float>& ve, list<float>& le)

{
sort(ve.begin(),ve.end());
unique_copy(ve.begin() ,ve.end(),le.begin());

+

176

In the example, sort() sorts the sequence in increasing order from ve.begin() to
ve.end() - which just happens to be all the elements of a vector. Of course, sort-
ing only makes sense if having one element is greater than (>) another is defined. For
writing, you need only specify the first element to be written. If more than one element
is written, the elements following that initial element will be overwritten. If we want to
add the new elements to the end of a container, we can write:

#include <list>
#include <vector>
#include <algo>

void f(vector<float>& ve, list<float>& le)

{

sort(ve.begin(),ve.end());
unique_copy(ve.begin(),ve.end(),le.back_inserter(le));

¥

When you first encounter a container, a few iterators referring to useful elements
can be obtained; begin() and end() are the best examples of this. In addition, many
algorithms return iterators. For example, the standard algorithm find looks for a value
in a sequence and returns an iterator to the element found.

#include <string>
#include <iostream.h>
#include <algo>

void find_it(const string& s, char c)

{

string::

if(i !=

const_iterator i = find(s.begin(), s.end(), c);
s.end())

cout << "found " << c << endl;

¥

The find algorithm returns an iterator to the first occurrence of a value in a sequence
or the one—past—the—end iterator.

Counting occurrences of an element is another algorithm provided by the standard
library. count takes a sequence as its argument, rather than a container. For example,

#include
#include
#include
#include

<string>
<iostream.h>
<algo>
<complex>

void f(list<complex>& lc, vector<string>& vc, string s);

177

int i1 = count(lc.begin(),lc.end(),complex(1,3));
int i2 = count(vc.begin(),vc.end(),"Michael");
int i3 = count(s.begin(), s.end(), ’x’);

}

Some algorithms apply a function to the elements of a sequence. for_each is an
example of this. It goes through the elements of a sequence and applies a function to
each element. For example, suppose that we have the class Student and that each student
has a name. Let print be a function that prints the name of a student.

#include <iostream.h>
#include <algo>
#include <list>

class Student;
void print(Student& st)

{

cout << st.name() << endl;
}
main()
{

list<Student> roll;

// initialize students
// print names of all the students in roll
for_each(roll.begin(),roll.end(),print);

}

for_each goes through the 1ist of students and prints the name of each student. Notice
that we pass do not pass the container 1list, but rather a sequence by indicating the
beginning and end of the sequence.
Iterators

What are iterators really? Any particular iterator is an object of some type. There
are, however, many different iterator types because an iterator needs to hold the infor-
mation necessary for doing its job for a particular container type. These iterator types
can be as different as the containers and the specialized needs they serve. For example, a
vector’s iterator is most likely an ordinary pointer because a pointer is quite a reasonable
way of referring to an element of a vector:

178

iterator: p\

alblc|d e|flg

vector:

Alternatively, a vector iterator could be implemented as a pointer to the vector plus
an index:

iterator: (start == p, position == 3)

vector:
position: O 1 2 3 4 5 6 7

Using such an iterator would allow bounds checking.

A list iterator must be something more complicated than a simple pointer to an
element because an element of a list in general does not know where the next element of
that list is. Thus, a list iterator might be a pointer to a link:

iterator: P
|

list: link| —=link| —=| link| —=| link| —
| | | |
elements: a b C d

What is common for all iterators is their semantics and the naming of their operations.
For example, applying ++ to any iterator yields an iterator that refers to the next element.
Similarly, * yields the element to which the iterator refers. In fact, any object that obeys a
few simple rules like these is an iterator. Furthermore, users rarely need to know the type
of a specific iterator; each container “knows” its iterator types and makes them available
under the conventional names iterator and const_iterator. (We use const_iterator
if we are not going to change the element.) For example, 1ist<Point>::iterator is the
general iterator type for 1ist<Point>. We rarely have to worry about the details of how
that type of iterator is defined.

179

