
LECTURE 14

Input and Output Streams
Classes dealing with the input and output of data are called stream classes. We have

dealt with these classes in a slightly haphazard way. I'd like to talk about them in a more
systematic way to give you a better idea of how input and output works. This won't be
a complete discussion since that would take too long. There is a chapter on streams in
Stroustrup and the �rst third of More C++ for Dummies deals with streams. Most of
this lecture comes from More C++ for Dummies. The class hierarchy is shown in the
�gure.

ifstreamofstream

iostream

fstream

ostream istream

ios

The mother of all base classes is ios. (In more recent compilers, ios has been replaced
by ios_base.) The class ios contains most of the actual I/O code. It is ios that keeps
track of the error state of the stream. The error ags are an enumerated type within
ios. In addition the ios class converts data for display. It understands the format of
the di�erent types of numbers, how to output character strings, and how to convert an
ASCII string to and from an integer or a oating{point number.

Standard output, cout, is an object of the class ostream, as is cerr, the standard
error output. Standard input, cin, is an object of the class istream. cout, cin, and
cerr are automatically constructed as global objects at program start{up. Objects of
iostream deal with both input and output. Objects of ifstream deal with input �les
and objects of the class ofstream deal with output �les. Objects fstream deal with
�les that can one can write to and read from. ofstream, ifstream, and fstream are
subclasses that are de�ned in the include �le fstream.h. Notice that fstream.h deals

145



with �le stream classes.
The overloaded right shift operator operator>>() is called the extractor. It is a

member function of the class istream. The overloaded left shift operator operator<<()
is called the inserter. It is a member function of the class ostream. Thus we have

//for input

istream& operator>>(istream& source, char *pDest);

istream& operator>>(istream& source, int &dest);

istream& operator>>(istream& source, char &dest);

//...etc...

//for output

ostream& operator<<(ostream& dest, char *pSource);

ostream& operator<<(ostream& dest, int source);

ostream& operator<<(ostream& dest, char source);

So when we type

#include <iostream.h>

void fn()

{

cout<<"Hello, world\n";

}

First, C++ determines that the left{hand argument is of type ostream and the right{
hand argument is of type char*. Armed with this knowledge, it �nds the prototype
operator<<(ostream&, char*) in iostream.h. C++ generates a call to this function,
the char* inserter, passing the function the string "Hello, world\n" and the object
cout as the two arguments. That is, it calls operator<<(cout, "Hello, world\n").
The char* inserter function, which is part of the standard C++ library, performs the
requested output.

Input and Output Files
We have already seen that to open �les to read from and write to:

#include <fstream.h>

int main() {

ifstream infile("input.dat"); //input.dat is the name of the file

//in your directory

ofstream outfile("output.dat"); //output.dat is the name of the file

//that will be created in your directory

float x;

while(infile >> x) //detects end-of-file and exits loop

{ outfile << "x = " << x << endl; }

146



infile.close();

outfile.close();

return 0;

}

The statement

ofstream outfile("output.dat");

calls one of the constructors of ofstream. It constructs the object outfile using the
argument "output.dat". The constructor that's called is

ofstream::ofstream(const char *pFileName,

int mode = ios::out,

int prot = filebuff::openprot);

The �rst argument is a pointer to the name of the �le to open. The second and third
arguments specify how the �le will be opened. Since we didn't specify the second and
third arguments, the default values take e�ect. Similarly, the statement

ifstream infile("input.dat");

calls the following constructor of the class ifstream:

ifstream::ifstream(const char *pFileName,

int mode = ios::in,

int prot = filebuff::openprot);

The legal values for mode are listed in the following table. The Application column
indicates which modes are valid for which �le types.

Available Modes for Opening a File

Flag Application Meaning

___________________________________________________________________________

ios::app out Always append output to the end of the file

___________________________________________________________________________

ios::ate out Open and seek to end-of-file ("at end")

___________________________________________________________________________

ios::binary in, out Open file in binary mode (as opposed to

text mode)

___________________________________________________________________________

ios::in in Open a file for input

___________________________________________________________________________

ios::nocreate in, out If file doesn't exist, don't create it

___________________________________________________________________________

ios::noreplace out Don't delete the file (open fails if file

147



exists unless you specify app or ate)

___________________________________________________________________________

ios::out out Open file for output

___________________________________________________________________________

ios::trunc out Truncate file to zero length if it

already exists (default if file exists and

app or ate is not specified)

___________________________________________________________________________

These modes are bit �elds that are enumerated members of a bit vector in the class ios.
That is why they are referred to as ios::out and ios::app and not simply as out and
app. Let me give an example of what I mean by \bit �elds". ios::app might equal
00000001, ios::ate might equal 00000010, ios::out might equal 00000100, etc. So
each mode corresponds to one bit which can be 0 or 1. This means that more than one
mode's value can be set at the same time using the arithmetic OR. For example, to open
an output �le with append, you could use the following:

ofstream out("outfile", ios::out | ios::app)

The | operator takes the union of the two arguments. Once you specify any part of the
mode, you must specify the entire mode. Thus, when I speci�ed ios::app, I also had
to specify ios::out, because it was no longer speci�ed by default. The ios::nocreate
ag says \If �le doesn't exist, don't create it." This is especially useful for input. For
example, it is the only way to test for the existence of a �le.

Let me explain the di�erence between opening a �le in text mode versus binary mode.
When a �le is in text mode, newline characters are converted into a carriage{return/line{
feed combination on output. The reverse process occurs on �le input: carriage{return/line{
feed pairs are converted into a single newline character. This process doesn't occur when
the �le is opened in binary mode. The default for opening a �le is text mode.

The third argument to the fstream constructors speci�es the type of �le sharing
allowed between applications. The possible values are:

File{Sharing Flags

Sharing Flag Meaning

___________________________________________________________________

filebuf::openprot Compatibility sharing mode

filebuf::sh_compat

___________________________________________________________________

filebuf::sh_none Exclusive mode; no sharing allowed

___________________________________________________________________

filebuf::sh_read Other read opens allowed

___________________________________________________________________

filebuf::sh_write Other write opens allowed

___________________________________________________________________

148



These are also bit �elds. So the union of filebuf::sh_read and filebuf::sh_write

allows complete sharing of �les between applications.
As we have seen in our earlier discussion of input and output, it is also possible to

open a �le for both input and output. This is handled by the fstream class, which
inherits from both the ifstream and ofstream classes. The constructor for the fstream
class looks the same as those for the ifstream and ofstream classes except the mode
argument is not defaulted:

fstream::fstream(const char *pFileName,

int mode,

int prot = filebuf::openprot);

To open such a �le, the mode should be set to ios::in|ios::out. For example,

#include <fstream.h>

int main() {

fstream inout("input.dat",ios::in|ios::out);

float x;

inout >> x;

inout<< endl << "x = " << x << endl;

inout.close();

return 0;

}

Error Flags
If something goes wrong with the input/output (I/O) operations, the error state is

set. Once the error state is set, all subsequent requests for I/O are ignored. The error
state stays set until it is reset by the application. This allows the application to perform
several I/O operations in row before checking{perhaps at the end of the function{whether
the I/O operations succeeded. The error ag consists of a set of bits, each of which can
be set independently. These bits are de�ned as follows. (Note the values are provided to
satisfy your curiosity. Don't rely on them. Always use the name of the ag instead.)

Flag Binary Value Meaning

____________________________________________________________________

ios::eofbit 001 End-of-file encountered

____________________________________________________________________

ios::failbit 010 Last I/O operation failed

____________________________________________________________________

ios::badbit 100 Invalid operation attempted

____________________________________________________________________

When a read operation encounters the end{of{�le, it sets the ios::eofbit in the error
ag for the ifstream object. The ios::failbit is set when an I/O operation fails.

149



This could happen if the format of the data is improper. For example, attempting to
extract a string of ASCII text into a number sets the failbit. In other words, if the
program expects a number to be input and you give it a string of letters, ios::failbit
is set. Attempting to read beyond the end{of{�le also sets the failbit. Similar to the
ios::failbit, the ios::badbit is set when an operation fails. The two ags di�er in
that the badbit indicates an unrecoverable error, whereas you might be able to recover
from the failbit (then again, maybe not, but at least you have a chance). For example,
attempting to open a �le that doesn't exist sets the badbit. Although it's interesting
to see which bits make up the error ag, you don't actually ever check or set these bits
directly. Instead, you use the following access functions:

Functions that Read or Set the Stream Error State

Function Purpose

_______________________________________________________________

ios::bad() Returns TRUE if the badbit is set

_______________________________________________________________

ios::clear(int=0) Sets the error flag

_______________________________________________________________

ios::eof() Returns TRUE if the eofbit is set

_______________________________________________________________

ios::fail() Returns TRUE if either the failbit or

the badbit is set

_______________________________________________________________

ios::good() Returns TRUE if no error bits are set

_______________________________________________________________

ios::rdstate() Returns the error flag

_______________________________________________________________

ios::operator!() Same as ios::fail()

_______________________________________________________________

ios::operator void*() Same as ios::good(); cast operator

_______________________________________________________________

The check functions are primarily ios::eof(), ios::fail(), and ios::bad(). Each of
these return TRUE if their respective bit is set (except ios::fail(), which returns a
TRUE if either the failbit or the badbit is set). The ios::good() function returns the
inverse of ios::fail(). Just about the worst named function in the entire C++ library
is ios::clear(). This function gets its name from the fact that you use it to clear the
error ag. However, you also use it to set an error ag. In fact, clear() allows you to
set or clear any of the error bits you want. The two overloaded operators are just cute
ways of calling ios::good() and ios::fail(). For example,

void fn(istream& in)

{

150



//stuff

if(!in) //invokes operator!(), which calls in.fail()

{

//operation failed

return;

}

}

Alternatively, we could write the following:

void fn(istream& in)

{

//stuff

if(in) //invokes operator void*(), which calls in.good()

{

//operation succeeded

//stuff

}

}

(Explanation of operator void*(). If we had a pointer istream *pIn to an istream

object, then *pIn would refer to the object pointed to by pIn. In our case in is an
istream object, so we don't need the indirection operator *.) Some programmers prefer
this form of calling ios::good() and ios::fail(). A simple example of error checking
is

#include <fstream.h>

int main() {

ifstream infile("input.dat"); //input.dat is the name of the file

//in your directory

ofstream outfile("output.dat"); //output.dat is the name of the file

//that will be created in your directory

float x;

while(!infile.eof() && infile.good()) //makes sure that end-of-file

//hasn't been reached and that

//infile is in good shape

{

infile >> x;

outfile << "x = " << x << endl;

}

infile.close();

outfile.close();

return 0;

}

151



(This program outputs the last x twice because the end{of{�le is not reached until it
goes beyond the last item in input.dat.)

Other Member Functions of istream and ostream
The istream and ostream classes support a number of member I/O functions in

addition to the overloaded insertion and extraction operators. Some of these follow:

The get() Function

The get() function comes in two avors. The simplest version inputs a single
character. For example, in the following program snippet, get() is used to read
input from the input �le input.txt:

#include <fstream.h>

int main() {

ifstream in("input.txt");

char c;

while(!in.eof())

{

c = in.get();

cout << c;

}

cout << endl;

return 0;

}

The program starts by opening the �le input.txt. The program then loops un-
til the �le is empty. On each loop, the program fetches another character and
outputs it to the standard output. Notice that get() is not quite the same as
operator>>(istream&,char&), which also fetches a single character from the in-
put stream. The di�erence lies in the fact that operator>>(), by default, skips any
white{space characters (e.g., space, tab, newline, etc.) found in the �le, whereas
get() does not. In fact this program also spits out a strange end{of{�le character
at the end.

The second version of get() carries the following prototype:

istream& istream::get(char* pszTarget, int nCount, char delim='\n');

This version inputs a series of characters terminated either by the appearance of
a terminator character in the input stream or by a character count. Notice that
you can have any character you want terminate the input. The count character
solves the potential bug of inputting more characters than the bu�er can hold. For

152



example, the following code is inherently unsafe because it is entirely possible that
the string extracted by operator>>() is longer than the 80 characters the bu�er
can hold:

istream in("input.txt");

char buffer[80];

in >> buffer;

A safer alternative would be

istream in("input.txt");

char buffer[80];

in.get(buffer, 80);

Because get() now knows the length of the receiving bu�er, it will make sure not
to extract more characters than the bu�er can handle. get() gets not more than
80 characters and puts them into the array buffer. You can have sizeof calculate
the bu�er for you:

istream in("input.txt");

char buffer[80];

in.get(buffer, sizeof buffer);

The getline() Function

The prototype declaration for the getline() function is identical to that of the
get() function:

istream& istream::getline(char* pszTarget, int nCount, char delim='\n');

In execution, getline() is identical to the second form of get(). The sole exception
is that get() extracts characters from the input stream up to, but not including,
the delimiter, whereas getline() extracts the delimiter as well. Neither function
stores the delimiter into the pszTarget bu�er. This makes getline() ideal for
reading an entire line of input at a time. It reads this line of input from the input
�le and puts it in the array pointed to by pszTarget.

#include <fstream.h>

int main() {

ifstream in("input.txt");

char szTarget[256];

in.getline(szTarget, sizeof szTarget);

cout << szTarget << "\n";

return 0;

}

153



This program reads an entire line at a time. Notice that when the line that was just
read is output to cout, the program must replace the delimiter that was stripped
out by getline().

The read() Function

The prototype declaration for the read function is

istream& read(char* pszTarget, int nCount);

This function reads a �xed number of characters from the input stream without
regard to any type of delimiter. In addition, read() doesn't tack a NULL character
to the end of the pszTarget bu�er, nor does it attempt to interpret '\n' characters.

The put() Function

The put() function carries the following simple prototype:

ostream& ostream::put(char ch);

This function does nothing more than output the speci�ed character to the out-
put stream. This is functionally identical to the operator<<(ostream&, char&)

inserter.

The putback(Ch c) function

The putback(Ch c) function allows a program to put an unwanted character back
to be read some other time, as shown in the class of complex numbers in lecture 6.
Ch is a template type, i.e., it's any type you specify.

The write() Function

The write() function outputs a �xed number of characters from the source char-
acter string to the output stream. This function carries the following prototype

ostream& ostream::write(const char* pszSource, int nCount);

This is also a block{oriented transfer.

The Bu�er
We said earlier that the base class ios does most of the input/output work. But it

needs another class called streambuf which acts as a server to the ios class. streambuf
is an intermediatry between ios and the physical media, e.g., the screen, the disk, etc.
The class streambuf performs the actual I/O to the outside world. The class streambuf
has several subclasses, each of which specializes in its own particular type of media. For
example, filebuf handles �le I/O for the ios class. Look at the following code:

154



ofstream out("ofile.txt");

int nAnInt = 10;

out << nAnInt;

The constructor for ofstream �rst creates an ios object. It then constructs a filebuf

object for output to the �le ofile.txt. During output, the ios object converts the
number 10 into the character 1 followed by the character 0. The ios object passes the
string \10" to the filebuf object for output to the �le. This is a nice division of labor.
When you create a di�erent type of output object{for example an ostream object that
outputs to the display{you get the same ios base class object (all formatting is the same,
after all) but a di�erent subclass of streambuf (outputting to a display is not at all the
same as outputting to a �le).

It's worth taking a moment to understand what disk bu�ering is. This is one of the
functions performed by streambuf. If streambuf went to the disk every time ios wanted
to write a few characters to disk, performance would be really slow. In fact, when you
read or write to the disk, you must read an entire block of data at a time. (It's like Lay's
Potato Chips{you can't eat just one \byte".) The size of a block depends on the disk, but
it's usually 512 bytes or more. Therefore, on output, the streambuf class collects output
requests in the bu�er until it has several blocks worth. It then writes the entire bu�er
to the disk at once. Writing the output bu�er to disk is called \ushing the bu�er." For
example, endl ends the line ("\n") and then ushes the bu�er.

On input, the situation is reversed. When the ios class asks for the �rst character
from the input stream, the input bu�er is empty. Rather than read a single character
(even if that were possible), the streambuf reads several blocks of data into the input
bu�er. Then streambuf returns only the �rst character to ios and keeps the rest. When
the next input request comes in, streambuf returns the next character from the input
bu�er without bothering to read from the disk. The streambuf class doesn't read from
the disk again until the input bu�er has been emptied by input requests.

A few conditions cause the output bu�er to be ushed to disk early. For example,
closing the �le causes any remaining data that might be hanging around in the bu�er
to be ushed to disk. The application program can also force the output bu�er to be
ushed by calling ostream::flush(). For example,

out << student;

out.flush()

This assures your data is safely on the disk in case the program or the system crashes
later on. Finally an output stream can be tied to an input stream so that a request for
I/O from the input stream immediately ushes the output stream. For example,

char szname[80]'

cout << "Enter your name";

cin >> szName;

155



Things wouldn't work so well if \Enter your name" didn't make it to the display because
it was cooling its heels in the output bu�er. Tying cout to cin ushes the output bu�er
so that \Enter your name" can appear on the screen. Other iostream objects are not
automatically tied. However, you can tie an ostream object to an iostream object in
such a way that the ostream is automatically ushed when an I/O operation is performed
on the iostream. For example,

#include <fstream.h>

int main()

{

ifstream in("input.dat");

ofstream out("output.dat");

//By tying out to in, out.flush() will be called whenever an I/O

//operation is performed on in

in.tie(&out);

// Do some stuff ...

// Now untie out from in

in.tie(0);

return 0;

}

Notice that you can untie an object by passing a NULL to tie().
Formatting

It is often desirable to format your output by setting the precision or the width, etc.
You can do this using the following ios member functions:

Function Purpose

_______________________________________________________________

fill(char) Set the fill character for padding

during output.

_______________________________________________________________

flags(long) Set the formatting flags.

_______________________________________________________________

precision(int) Set the precision when outputting a

floating-point value

_______________________________________________________________

width(int) Set the minimum width. Restricts

156



the number of characters that are

input. If fewer characters are required

on output, the remaining space is filled

with the fill character.

Each of these functions also has a void argument list version, which simply queries the
current setting. The fill() function sets the �ll character. The default for the �ll
character is the blank space. The precision() function sets the precision. During the
display of oating{point numbers, this setting determines the number of digits displayed
to the right of the decimal point.

On output, the width() function speci�es the minimum �eld width to be used in
displaying the next �eld inserted. If the value being output requires more characters
than are speci�ed by width(), the width is ignored. If the output �eld is smaller than
the speci�ed width, the di�erence is made up by repeated application of the �ll character.
If the width is zero, the minimum number of characters necessary to contain the �eld
are used for output. Zero is the default for the width. The width() function is strange
in one respect. When you set a data member within a structure to a particular value,
you usually expect it to stay set. But this is not so for the width. Each time you set the
width, that setting applies only to the next operation. After that, the width is reset to
zero.

The width() function also has an e�ect on the input. Setting the width restricts the
number of characters extracted by the char* extractor. This is important because the
operator>>(istream&, char*), unlike the getline() function, has no place to indicate
the size of the bu�er receiving the character string. Settting the width to the size of the
bu�er ensures that the bu�er boundaries are not exceeded.

Here is an example of how to use a few of these format control functions:

#include <fstream.h>

int main()

{

ifstream infile("input.dat");

if(infile.fail())

{

cout << "Couldn't open input.dat" << endl;

return -1;

}

char buffer[5]; //short array of characters

infile.width(sizeof buffer);

infile >> buffer;

cout << buffer << endl;

157



infile.width(sizeof buffer); //have to repeat width()

infile >> buffer;

cout.width(15);

cout.fill('*');

cout << buffer << endl;

return 0;

}

The program starts by opening the input �le in the normal fashion. Before extracting
from the input �le object, however, the program sets the input width to match the size
of the bu�er. The program then extracts a few characters into buffer and displays them
to cout so you can see what you have. Suppose the input �le consists of 30 characters,
all in a row.

//input.dat file

123456789012345678901234567890

If we just had an in >> buffer statement, the program would try to put all 30 characters
into the bu�er which has length 5. This would crash the program and give a \bus error".
The output from running the program is

1234

***********5678

Notice that width the input stream width set to 5 characters, the extractor reads only
four characters, cleverly leaving a space for the NULL in the �nal position of the bu�er.

The remaining formatting features of ios are hidden in a protected data member
called x_flags. This data member consists of a series of 1{bit �elds, some of which
work together. Because these are single{bit �elds, however, they can be (and are) set
in di�erent combinations to produce the desired e�ect. They are listed on pages 89{
90 of More C++ for Dummies. The only ones that you would probably use with any
frequency are those dealing with oating{point format. By setting either the ios::fixed
or ios::scientific ag, you specify whether oating{point numbers are displayed in
�xed or scienti�c format. If neither bit is set, the stream is in automatic mode, meaning
use whatever is most applicable. In automatic mode, the precision referred to previously
speci�es the number of digits to be displayed in the number. In either �xed or scienti�c
mode, precision speci�es the number of digits after the decimal point. The default is
automatic. Several functions access the ag bits. The function long ios::flags()

reads the current ag word. The function long ios::flags(long lNewFlag) sets the
ag word to the value contained in lNewFlag, and returns the previous value. An example
of how to use this is:

long lPreviousFlags;

lPreviousFlags = cout.flags(); //record current flag word

158



cout.flags(cout.flags() | ios::fixed); //fixed floating point notation

cout << "7 = " << 7.0 << endl;

cout.flags(lPreviousFlags); //reset flags to previous value

cout.flags(cout.flags() | ios::scientific); //scientific notation

cout << "7 = " << 7.0 << endl;

We write

cout.flags(cout.flags() | ios::fixed);

so that we have the union of �xed oating point notation with the ags that have already
been set. If we had written

cout.flags(ios::fixed);

we would have wiped out the all the other format ags that had been set, even the
default ones. There are several other functions that you might �nd more convenient
than flags(). For example, the ios::setf(long) function sets a particular ag, and
the ios::unsetf(long) function clears that ag. So to set the scienti�c notation ag, I
could write:

cout.setf(ios::scientific);

To clear it, I could write:

cout.unsetf(ios::scientific);

Manipulators
Using ios member functions breaks up the ow of the output line. It's not very

elegant to write

cout << "I = ";

cout.width(10);

cout << i << endl;

It's prettier to write

cout << "I = " << i << endl;

To overcome this problem, one can use a manipulator. Manipulators are objects de�ned
in the include �le iomanip.h to have the same e�ect as the member functions calls. In
fact, they call the functions. The only advantage to manipulators is that the program can
insert them directly into the stream rather than resort to a separate function call. Some
manipulators take arguments and some do not. Technically speaking, you only have to
include the header �le iomanip.h in order to use the manipulators with arguments. Some
of the manipulators are listed here. A more complete list can be found on page 100 of
More C++ for Dummies.

159



Manipulator Member Functions Purpose

__________________________________________________________________

endl ostream::flush() Insert \n and flush the buffer

__________________________________________________________________

flush ostream::flush() Flush the stream

__________________________________________________________________

setfill() ios::fill() Set the fill character

__________________________________________________________________

setiosflags() ios::setf() Set the flags

__________________________________________________________________

resetiosflags() ios::unsetf() Undo the flags

__________________________________________________________________

setprecision() ios::precision() Set the floating-point precision

__________________________________________________________________

setw() ios::width() Set the width of the next field

Just like the width() function, the setw() manipulator must be included in the stream
for each object whose width is not the default, zero. The only advantage that function
calls have over manipulators is that the functions return the previous settings while the
manipulators don't return anything. So if you want to store the previous setting, do
something, then restore the previous setting, you can easily do it with function calls.
With manipulators, you can only undo the ags with resetiosflags(). Here is an
example using manipulators:

#include <iostream.h>

#include <iomanip.h>

void fn()

{

cout << setw(8) << 10 << setw(8) << 20 << endl; //keep setting width

cout << setiosflags(ios::scientific)

<< "7.0 = " << 7.0 << endl; //scientific notation

cout << resetiosflags(ios::scientific); //turn off scientific notation

}

Custom Inserters
The fact that C++ overloads the left shift operator to perform output means that

you can overload the same operator to perform output on classes you de�ne. We have
seen examples of this. Recall that the class of complex numbers in lecture 6 had a friend
function that overloaded the inserter:

ostream & operator << (ostream &, const complex &);

Let's give another example with the class USDollar:

160



#include <iostream.h>

#include <iomanip.h>

class USDollar

{

public:

USDollar(double v = 0.0)

{

dollars = v;

cents = int((v - dollars) * 100.0 + 0.5);

}

operator double()

{

return dollars + cents / 100.0;

}

void display(ostream& out)

{

out << '$' << dollars << '.'

//set fill to 0's for cents

<< setfill('0') << setw(2) << cents

//now put it back to spaces

<< setfill(' ');

}

protected:

unsigned int dollars;

unsigned int cents;

};

//operator<< - overload the inserter for our class

ostream& operator<< (ostream& o, const USDollar& d)

{

d.display(o);

return o;

}

int main()

{

USDollar usd(1.50);

cout << "Initially usd = " << usd << "\n";

usd = 2.0 * usd;

cout << "then usd = " << usd << "\n";

return 0;

}

The display() function starts by displaying $, the dollar amount, and the obligatory dec-

161



imal point. Notice that output is to whatever ostream object it is passed and not neces-
sarily just to cout. This allows the same function to be used on objects of ostream and its
subclasses such as fstream. When it comes time to display the cents amount, display()
sets the width to 2 positions and the leading character to 0. This ensures that numbers
smaller than 10 display properly. Notice how the class USDollar, instead of accessing
the display() function directly, also utilizes an operator<<(ostream&, USDollar&).
The programmer can now output USDollar objects as easily as intrinsic types, as the
example in main() demonstrates. The output from the program is:

Initially usd = $1.50

then usd = $3.00

Notice that the operator<<() returns the ostream passed to it. This allows the operator
to be chained with other inserters in a single expression, i.e, this allows us to string output
operators together:

complex c, d, x;

ostream s;

s << c << d << x;

Because the operator<<() binds left to right, the expression

s << c << d << x;

can be interpreted as

(((s << c) << d) << x);

The �rst insertion outputs the complex number c to s. The result of this expression is
the object s, which is then passed to operator<<(ostream &, const complex &). It is
important that this operator return its ostream object so that the object can be passed
to the next inserter in turn.

Smart Inserters
Many times, you would like to make the inserter smart. That is, you would like to

say cout << baseClassObject and let C++ choose the proper subclass inserter in the
same way that it choose the proper virtual member function. Because the inserter is not
a member function, you cannot declare it virtual directly. There is a clever way to get
around this:

#include <iostream.h>

#include <iomanip.h>

class Currency

{

public:

Currency(double v = 0.0)

162



{

unit = v;

cent = int((v - unit) * 100.0 + 0.5);

}

virtual void display(ostream& out) = 0;

protected:

unsigned int unit;

unsigned int cent;

};

class USDollar : public Currency

{

public:

USDollar(double v = 0.0) : Currency(v)

{

}

//display $123.00

virtual void display(ostream& out)

{

out << '$' << unit << '.'

<< setfill('0') << setw(2) << cent

<< setfill(' ');

}

};

class DMark : public Currency

{

public:

DMark(double v = 0.0) : Currency(v)

{

}

//display 123.00DM

virtual void display(ostream& out)

{

out << unit << '.'

//set fill to 0's for cents

<< setfill('0') << setw(2) << cent

//now put it back to spaces

<< setfill(' ')

<< " DM";

}

};

ostream& operator<< (ostream& o, Currency& c)

163



{

c.display(o);

return o;

}

void fn(Currency& c)

{

// the following output is polymorphic because the

// operator<<(ostream&, Currency&) is defined through a virtual

// member function

cout << "Deposit was " << c

<< "\n";

}

int main()

{

//create a dollar and output it using the

//proper format for a dollar

USDollar usd(1.50);

fn(usd);

//now create a DMark and output it using its own format

DMark d(3.00);

fn(d);

return 0;

}

The class Currency has two subclasses, USDollar and DMark. In Currency, the display()
function is declared pure virtual. In each of the two subclasses, this function is overloaded
with a display() function to output the object in the proper format for that type. The
call to display() in operator<<() is now a virtual call. Thus, when operator<<()

is passed USDollar, it outputs the object as a dollar. When passed DMark, it outputs
the object as a deutsche mark. Thus, although operator<<() is not virtual, because it
invokes a virtual function, it acts like a virtual function and the result is:

Deposit was $1.50

Deposit was 3.00 DM

This is another reason why it is better to perform the work of output in a member
function, and let the non-member function refer to that function.

164


