
LECTURE 12
Some Tips on How to Program in C++

When it comes to learning how to program in C++, there's no substitute for expe-
rience. But there are some things that are good to keep in mind. Advice on how to
construct programs can be found in the last 6 chapters of More C++ for Dummies and
in chapters 23 and 24 of the 3rd edition of Stroustrup. Here is a brief summary of that
advice:

Understand and State the Problem

It's important to have a clear understanding of the problem and how to solve it.
Although this may seem obvious, you would be surprised at how many programmers
start writing a program without writing down or even clearly stating the problem that
their program is supposed to solve.

Finding the Classes

If you're trying to �gure out what classes you should have, state the problem and
solution. Note the nouns and verbs you use in stating the problem, and use these as
candidates for your classes. (Convert the verbs into nouns.) Represent concepts as
classes. Each class should stand for something and it should represent just one thing.

Understand the Relationships Between Classes

Group the classes according to their relationships. To clarify your thinking, try
drawing a diagrams to illustrate how the classes are related. This is helpful for hierarchical
relationships. Hierarchies often translate into inherited classes. Use public inheritance
to represent IS_A relationships. For example, a Manager IS_A Employee. In a hierarchy
of inherited classes, �gure out what properties the classes have in common, and make
these properties of the base class. This is called factoring. Use membership in classes to
represent HAS_A relationships, e.g., a Car HAS_A Motor. So make motor a member of the
class Car. Diagrams can also help illustrate the relationships between di�erent groups of
classes.

Class Structure

To be an e�ective abstraction, a class should demonstrate the following properties:

1. Maximize \cohesion" within a class. Cohesion refers to how well the class describes
a single abstraction in a clear, concise manner. A class has good cohesion if it is
su�cient, primitive, and complete.

A class is su�cient if it captures enough characteristics of the abstraction to permit
e�cient interaction between classes. For example, to be an e�ective representation
of an employee, the class Employee must represent all the relevant properties of an
employee in a way that's useful to the rest of the program. The program shouldn't
rely on external functions or on outside data areas to be able to make use of the
Employee class.

A class is primitive if you can't easily divide it into separate classes. A primitive
class represents a single concept. Although dividing a nonprimitive class may in-
crease the number of classes, it generates smaller, simpler, and more useful classes.

127



Dividing up a primitive class results in subclasses that do not completely de�ne a
concept. As a result, the two classes must make frequent reference to each other.
The interclass coupling rises dramatically.

Finally a class is complete if its public interface provides a full set of operations.
Other classes can easily use a complete class because all the operations other classes
will need are available.

2. Strive for encapsulation and prefer loosely coupled classes. Coupling refers to the
level of interaction between di�erent classes. Loosely coupled classes are preferable
to tightly coupled classes for the following reasons:

(a) Loosely coupled classes are more likely to be reusable with other classes be-
cause they don't rely heavily on outside classes.

(b) A loosely coupled class is easier to understand because it can be understood
by itself.

(c) A loosely coupled class tends to be insulated from changes in other classes.

Public Interfaces

Some things to keep in mind about the interface between a class and the rest of
the world:

(a) A class with a simple, easy{to{understand public interface tends to be more
loosely coupled with its environment.

(b) Limit the number of friends.

(c) Keep the interface simple.

3. Keep classes simple; minimize their complexity.

It's generally a good idea to make data members private or protected, not public. Write
public access functions for these data members. This gives the class some control over
how applications outside the class interact with the class. Member functions tend to
be public since they often do tasks that the outside world needs. Try to keep member
functions simple.

Make Your Program Easy To Read

You should make your program easy to read. This helps others who are trying to
understand your program and also helps you �nd bugs. You should adopt a style with
the following features:

1. Liberal but consistent use of white space, including blank lines, to accentuate the
structure of the program. Indent to show where loops and if blocks begin and end.

2. E�ective use of block comments to explain what's going on. In my opinion, you
can never have too many comment lines. The beginning of your program should

128



state what the program is meant to do. Each class should begin with a description
of what it contains and what it does. In the class de�nition in the .h �le, each
member function and data member should have a brief description describing what
it is for and, for a member function, what it does. Description of member functions
should explain what the input arguments are, what the function does, and what it
returns.

3. A uniform naming convention for classes and objects. Use names that are de-
scriptive of the object. One notation used for naming classes and objects is called
Hungarian notation. It goes like this:

(a) Use all uppercase letters for variables in #define statements. Use underscores
to delimit words in a multiword name.

(b) Begin each word in a multiword name with an uppercase letter, e.g., RealFunction.
Avoid the use of underscores except as noted in the preceding rule.

(c) Begin class, typedef, and enumerated type names with an uppercase letter.

(d) Begin function names with a lowercase letter.

(e) Begin object names with one or more lowercase letters indicating the object
type, using the pre�xes listed below:

Prefix Type

____________________________________________________________________

c char

n integer

b bool

f float

d double

l long

u unsigned

p pointer

s string

sz ascii string

For example, int *pnMode is a pointer to an integer.

Debugging

You shouldn't write your whole program and then try to debug it all at once. You
should debug it as you go along. Sometimes I test in main() some of the functions that
I will later make member functions. I usually insert write or cout statements to zero in
on a bug. You can use the debugger package on your computer. For unix systems there
is ddd which is a front end for gdb. To use ddd or gdb, compile the program with a -g


ag. Then run it with ddd or gdb. You would type something like this:

129



sun1% g++ -g yourprogram.C

sun1% gdb a.out

(sun1% is the prompt on sun1.ps.uci.edu in the computer lab.) Once you have debugged
the program, compile it without the -g 
ag; it will run faster that way. There is also ups
which is another debugging package you can use. Look up the man pages for documenta-
tion. You can also insert error checking code into your program while you are developing
it. Later, when things are running smoothly, you can take the error checking lines out.
For example, you can make an isLegal() member function that checks the range and
type of each data member or the input parameters passed to a member function. One
can also \throw and catch exceptions".

Program Evolution

As you write and work with your program, you will probably realize that there are
better ways to do things and better ways to organize it. And perhaps, better choices for
classes than what you chose initially. This is normal, and you should not be afraid to
make changes. If your program is well encapsulated, then you can make changes in one
part of your program without seriously a�ecting other parts of your program.

E�ciency and Optimization

Optimization and e�ciency are important goals, especially for scienti�c programming.
If you are trying to optimize your code, i.e., if you are trying to get it to run faster, you
shouldn't try to optimize every last line of your program. Rather you should try to
improve the code where the computer is spending the most time. Quite often this is in
the innermost loop of a nested series of loops. To �nd out where the most time is spent
in running your program, you can use a pro�ling software. In unix, you compile your
program with a -pg 
ag. Then you run it as usual. This produces a �le gmon.out. Then
type gprof, and an evaluation of your program will be displayed. So the commands you
type look like

sun1% g++ -pg myprogram.cc

sun1% a.out

sun1% gprof

You should estimate how many times the innermost loop is evaluated when your program
is run. You may �nd that it's millions of times. So in the innermost loop you should have
very low level code that's easy and quick to execute; not high level code that involves a lot
of manipulations. For example, you don't want if statements in the innermost loop if you
can help it. You also don't want code in the innermost loop that costs a lot of overhead,
e.g., going through a lot of pointers to get to the right place in memory. E�ciently
accessing (RAM) memory is important. Sometimes you just have to experiment to see
what runs faster on a particular machine with a particular compiler. Di�erent compilers
optimize code in di�erent ways for di�erent processors. The order in which you do
operations can make all the di�erence. For example, if you go through the elements of a
matrix as in matrix multiplication, you want the fastest moving index in the innermost

130



loop. C and C++ store elements by row, so when going through matrix elements, the
column index moves the fastest. But Fortran stores matrix elements by column, so the
row index moves the fastest. Accessing adjacent elements in memory is better. The less
jumping around in memory, the faster the program. As you go through a row in C or
C++, you are going through elements that are stored next to each other. Suppose we
multiply matrix A by matrix B to get matrix D. We take a dot product of a row in A
with a column of B.

= *

A B

c(0,0)

D

So we can e�ciently access the elements of A but not of B. This slows down our
program. To make things more e�cient, we can transpose matrix B. Let's call the
transposed matrix tB. Now matrix multiplication involves the dot product of a row of A
and a row of tB. In both cases the elements are stored next to each other. Of course it
takes a little work to transpose B, but it is worth it if the matrices are big.

Another reason for a program to run slow is if the executable becomes larger than
the available RAM (Random Access Memory). If this is the case, the executable has
to be swapped in and out of memory, and this slows things down. So make sure you're
program isn't too big. E�cient use of memory is one of the bene�ts of C++.

131


