
LECTURE 11

Multiple Inheritance

In the class hierarchies discussed so far, each class has inherited from a single parent.
However, it is possible for a class to inherit from more than one base class. This is called
multiple inheritance. An example is the class sleeper sofa, which is both a bed and a
sofa:

class Bed

{

public:

Bed(); //constructor

void sleep();

int weight;

};

class Sofa

{

public:

Sofa(); //constructor

void sit();

int weight;

};

class SleeperSofa: public Bed, public Sofa

{

public:

SleeperSofa();

void foldOut();

};

int main()

{

SleeperSofa ss;

ss.sit(); //Sofa::sit()

ss.foldOut(); //SleeperSofa::foldOut()

ss.sleep(); //Bed::sleep()

return 0;

}

Notice the class SleeperSofa inherits from both Bed and Sofa. SleeperSofa inherits
all members of both base classes. Thus ss.sit() and ss.sleep(); are legal. You can
use a SleeperSofa as a Bed or as a Sofa. Plus the class SleeperSofa can have members
of its own such as foldOut().

Inheritance Ambiguities

Although multiple inheritance is a powerful feature, it introduces some ambiguities.
Consider the preceding example where both Bed and Sofa have a data member weight.

119



Which weight does SleeperSofa inherit? The answer is both. SleeperSofa has a
member Bed::weight and another member Sofa::weight. Because they have the same
name, unquali�ed references to weight are now ambiguous as in the following example:

#include <iostream.h>

void fn()

{

SleeperSofa ss;

cout << "weight = "

<< ss.weight //illegal: which weight?

<< "\n";

}

The inheritance structure is shown in the following �gure:

Bed

SleeperSofa

Sofa

weight weight

We could �x this by explicitly specifying the desired base class:

#include <iostream.h>

void fn()

{

SleeperSofa ss;

cout << "weight = "

<< ss.Sofa::weight //ok but ugly

<< "\n";

}

This is ok but undesirable because it forces class information to leak outside the class
into the application code.

120



Virtual Inheritance
So how do we �x name collisions? One way might be to make a more fundamental

base class Furniture that has weight as a member. Then derive Bed and Sofa from
Furniture. So we want the inheritance structure to look like:

Bed

SleeperSofa

Sofa

weight

Furniture

#include <iostream.h>

//Furniture - more fundamental concept; this class

// has "weight" as a property

class Furniture

{

public:

Furniture()

{ }

int weight;

};

class Bed : public Furniture

{

public:

Bed()

121



{ }

sleep()

{ }

};

class Sofa : public Furniture

{

public:

Sofa()

{ }

void watchTV()

{ }

};

class SleeperSofa : public Bed, public Sofa

{

public:

SleeperSofa()

{ }

void foldOut()

{ }

};

void fn()

{

SleeperSofa ss;

cout << "weight = "

<< ss.weight //problem solved; right?

<< "\n";

}

int main()

{

fn();

return 0;

}

This doesn't work because now SleeperSofa inherits 2 Furniture objects; one through
Bed and one through Sofa. So when weight is called, it doesn't know which one to use.
The inheritance structure actually looks like:

122



Bed

SleeperSofa

Sofa

weight

Furniture
weight

Furniture

Obviously SleeperSofa only needs one Furniture object. To accomplish this, we
use virtual inheritance.

#include <iostream.h>

class Furniture

{

public:

Furniture()

{ }

int weight;

};

class Bed : virtual public Furniture

{

public:

Bed()

{ }

void sleep()

{ }

};

class Sofa : virtual public Furniture

123



{

public:

Sofa()

{ }

void watchTV()

{ }

};

class SleeperSofa : public Bed, public Sofa

{

public:

SleeperSofa() : Sofa(), Bed()

{ }

void foldOut()

{ }

};

void fn()

{

SleeperSofa ss;

cout << "weight = "

<< ss.weight

<< "\n";

}

int main()

{

fn();

return 0;

}

Notice the addition of the keyword virtual in the inheritance of Furniture in Bed and
Sofa. This says, \Give me a copy of Furniture unless you already have one somehow, in
which case I'll just use that one." So SleeperSofa ends up inheriting only one Furniture
object. Now the reference to weight in fn is no longer ambiguous and we have solved the
problem of name collisions. Now the inheritance structure is the desired one and looks
like:

124



Bed

SleeperSofa

Sofa

weight

Furniture

If virtual inheritance solves this problem so nicely, why isn't it the norm or default?
There are 2 reasons. First virtually inherited base classes are handled internally quite
di�erently than normally inherited base classes, and these di�erences involve extra over-
head. Second, you might want 2 copies of the base class, though this is unusual. As
an example of the latter, consider a TeachingAssistant who is both a Student and a
Teacher, both of which are subclasses of Academician. If the university gives its TA's 2
ID's{a student ID and a separate teacher ID{class TeachingAssistant will need 2 copies
of class Academician.

Order of Construction

The rules for constructing objects need to be expanded to handle multiple inheritance.
The constructors are invoked in the following order:

1. The constructors for any virtual base classes are called in the order in which the
classes are inherited.

2. Then the constructors for any nonvirtual base classes are called in the order in
which the classes are inherited.

3. Next the constructor for any member objects are called in the order in which the
member objects appear in the class.

125



4. Finally, the constructor for the class itself is called

Notice that base classes are constructed in the order in which they are inherited and not
in the order in which they appear on the constructor line.

Cautionary Note

I bring up the topic of virtual inheritance not because I want you to go out and use
it right away, but because you may want to read someone else's code which uses it. Here
are some reasons to be cautious about using multiple inheritance:

1. Multiple inheritance introduces more overhead and therefore is more ine�cient.

2. It can introduce ambiguities like the name collisions we saw earlier. Another am-
biguity arises when casting a pointer from a subclass to a base class; this often
changes the value of the pointer in strange and mysterious ways. For example:

#include <iostream.h>

class Base1 {int mem};

class Base2 {int mem};

class SubClass: public Base1, public Base2 {};

void fn(SubClass *pSC)

{

Base1 *pB1 = (Base1*)pSC;

Base2 *pB2 = (Base2*)pSC;

}

pB1 and pB2 are not numerically equal even though they came from the same
original value pSC. (Actually, if fn is passed a zero, they are equal. See how strange
it gets?)

126


