
Input
Suppose you want to read in an arbitrary number of oats. How do you do this?

1. Just let the number of x's be an input parameter n:

#include <iostream.h>

int main()

{

int n;

float x;

cout << "Number of x's" << endl;

cin >> n;

int i;

for(i=0; i<n; i++)

{

cout<<"Enter x" << endl;

cin >> x;

}

return 0;

}

2. Use control-D to end the program:

#include <iostream.h>

int main()

{

float x;

while(cin>>x)

//do whatever

return 0;

}

1

3. Have a character at the end of the stream, like \q". Then use

#include <iostream.h>

int main()

{

char c;

float x;

while (1)

{

cin >> c;

if(c == 'q')

{exit(1);}

else

{

cin.putback(c); //put c back in the input stream

cin >> x;

}

}

return 0;

}

4. You can use argc and argv if you enter everything on the command line of your

program. argc is the number of items listed in the command line and argv is an

array of those items where each item is regarded as a string.

#include <stdlib.h>

int main(int argc, char **argv)

{

int i;

float x;

for(i=1; i<argc; i++) //start at i=1 because the executable

//is not a number

{

x=atof(argv[i]); //atof turns ascii into float

}

return 0;

}

The way you run this is:

moses% a.out 24.3 534.5 664.3

Here argc = 4 and argv[0] is a.out.

2

Input and Output Files

The quick and dirty way to read from one �le and write to another �le is to use cout

and cin as before, but on the command line type

moses% a.out < input.dat > output.dat

where input.dat is the input �le and output.dat is the output �le. You can use any

name for the input and output �les. The drawback is that you can have only one input

�le and one output �le.

A better way to open �les to read from and write to:

#include <fstream.h>

int main() {

ifstream infile("input.dat"); //input.dat is the name of the file

//in your directory

ofstream outfile("output.dat"); //output.dat is the name of the file

//that will be created in your directory

float x;

while(infile >> x) //detects end-of-file and exits loop

{ outfile << "x = " << x << endl; }

infile.close();

outfile.close();

return 0;

}

There is nothing sacred about the words infile and outfile. You can use anyword in

their place. Notice that infile acts like cin and outfile acts like cout.

We can open a �le so that anything written to it is appended to the end:

#include <fstream.h>

int main() {

ifstream infile("input.dat");

ofstream outfile("output.dat",ios::app); //append to output.dat

float x;

while(infile >> x) {

outfile << "x = " << x << endl; }

infile.close();

outfile.close();

return 0;

}

3

It is also possible to open a �le for both input and output. For example,

#include <fstream.h>

int main() {

fstream inout("input.dat",ios::in|ios::out);

float x;

inout >> x;

inout<< endl << "x = " << x << endl;

inout.close();

return 0;

}

4

