
Error Handling and Exceptions
C++ has a mechanism for capturing and handling errors called exceptions. It uses

the keywords try, throw and catch (which means you can't use these words as variable
names). In brief, it works like this: A function trys to get through a piece of code. If
the code has a problem, it throws something (like a character string, number, or a class)
that the calling function must catch and process. A simple example is

#include <iostream.h>

//factorial - compute factorial

int factorial(int n)

{

// you can't handle negative values of n

if (n < 0)

{

throw "Argument for factorial negative";

}

// go ahead and calculate factorial

int accum = 1;

while (n > 0)

{

accum *= n;

n--;

}

return accum;

}

// any old function will do

void someFunc()

{

try

{

// this will generate an exception

cout << "Factorial of -1 is " << factorial(-1) << endl;

// control will never get here

cout << "Factorial of 10 is " << factorial(10) << endl;

}

1



// control passes here

catch(char* pError)

{

cout << "Error occurred:" << pError << endl;

}

}

someFunc() starts out by creating a block of code that begins with the word try.
Within this block, the program can do whatever it wants. In this case, someFunc()
attempts to calculate the factorial of a negative number. The factorial() function
detects the erroneous request and throws an error indication using the throw keyword.
Control passes to the catch phrase, which immediately follows the closing brace of the
try block. The second call to factorial() is not performed.

Exception handling is not used that much in scienti�c programming, but it is a good
way to make your program idiot{proof. It is particularly useful if your program is to
be used interactively. Suppose you are writing a program that produces windows and
menus. If something goes awry, your windows will hang. Using exceptions allows the
program (and windows) to exit gracefully or even recover by trying again.

The thing that is thrown is called an \exception." Exceptions are caught by an
\exception handler," which appears immediately following the try block. Here is the
syntax:

try{

...

// "throw" may be contained in a function that is called here

}

catch(arguments){

statement; //exception handler body

...

}

There can be one or more catch phrases associated with a try block.
Unwinding the Stack

Let's take a closer look at how exceptions are handled. When the throw occurs, C++
�rst copies the thrown object to some neutral place. It then begins looking for the end of
the current try block. If a try block is not found in the current function, the function's
execution is terminated and control passes to the calling function. A search is then made
of that function. If no try block is found there, control passes to the function that called
it, and so on up the stack of calling functions. This process is called \unwinding the
stack." Basically the computer searches for a try block by going to higher and higher
levels of the program. As stack unwinding occurs, any objects that go out of scope
are destructed just as if the function had executed a return statement. This keeps the
program from losing assets or leaving objects dangling.

2



When the encasing try block is found, the code searches for the the �rst catch phrase
immediately following the closing brace of the try block. If the object thrown matches
the type of object that the catch phrase expects, then control passes to that catch phrase.
If not, a check is made of the next catch phrase. If no matching catch phrases are found,
the code searches the next higher level for a try block in an ever outward spiral until
an appropriate catch phrase can be found. If no catch phrase is found, the program is
terminated.

Consider the following example:

#include <iostream.h>

class Obj

{

public:

Obj(char c)

{

label = c;

cout << "Constructing object " << label << endl;

}

~Obj()

{

cout << "Destructing object " << label << endl;

}

private:

char label;

};

void f1();

void f2();

int main(int, char*[])

{

Obj a('a');

try

{

Obj b('b');

f1();

}

catch(float f)

{

cout << "Float catch" << endl;

}

catch(int i)

3



{

cout << "Int catch" << endl;

}

catch(...)

{

cout << "Generic catch" << endl;

}

return 0;

}

void f1()

{

try

{

Obj c('c');

f2();

}

catch(char* pMsg)

{

cout << "String catch" << endl;

}

}

void f2()

{

Obj d('d');

throw 10;

}

The output looks like this:

Constructing object a

Constructing object b

Constructing object c

Constructing object d

Destructing object d

Destructing object c

Destructing object b

Int catch

Destructing object a

First you see the four objects a, b, c, and d being constructed as control passes through
each declaration before f2() throws int 10. Because no try block is de�ned in f2(),
C++ unwinds f2()'s stack, causing object d to be destructed. f1() de�nes a try block,
but its only catch phase is designed to handle char*, which does not match the int

4



thrown. Therefore C++ continues looking. It unwinds f1()'s stack, resulting in object
c being destructed. Back in main(), C++ �nds another try block. Exiting that block
causes object b to go out of scope. The �rst catch phrase is designed to catch oats that
don't match our int, so it's skipped. The next catch phrase matches our int exactly,
so control stops there. The �nal catch phrase, which would catch any object thrown, is
skipped because a matching catch phrase was already found.

Throwing Classes

So far we have thrown phrases (char*) and integers. In fact we can throw any type
of object, even classes. For example, suppose we make an Error class and use it in our
factorial example:

#include <iostream.h>

class Error

{

public:

Error(int nErrorCode, char* pReason): // constructor

nCode(nErrorCode), Reason(pReason)

{}

void display(ostream& out)

{

out << "Error Code = " << nCode << " : " << Reason;

}

private:

int nCode;

char* Reason;

};

//factorial - compute factorial

int factorial(int n)

{

// you can't handle negative values of n

if (n < 0)

{

int ErrorCode = -1;

// Throw Error class

throw Error(ErrorCode,"Argument for factorial negative");

}

// go ahead and calculate factorial

5



int accum = 1;

while (n > 0)

{

accum *= n;

n--;

}

return accum;

}

void main()

{

int result;

try

{

// this will generate an exception

result = factorial(-1);

cout << "Factorial of -1 is " << result << endl;

// control will never get here

cout << "Factorial of 10 is " << factorial(10) << endl;

}

// control passes here

catch(Error& error)

{

cout << "Fielded error: ";

error.display(cout);

cout << endl;

}

}

We can make this even fancier by using inheritance and polymorphism. In particular,
let's make Exception a base class and a derived class called InvalidArgumentException.
Let's make a somewhat useful error class that tells the line number and �le where the
error occurred. We will have factorial throw the exception.

#include <iostream.h>

#include <string.h>

//Exception-generic exception handling class

6



class Exception

{

public:

Exception(char* pMsg, char* pFile, int nLine)

{

strcpy(msg,pMsg);

msg[sizeof(msg)-1]='\0'; //make sure msg is terminated

strcpy(file,pFile);

file[sizeof(file)-1]='\0';

lineNum=nLine;

}

virtual void display(ostream& out)

{

out << "Error: " << msg << endl;

out << "Occurred on line number " << lineNum

<< ", in file called " << file << endl;

}

protected:

// error message

char msg[80];

// file name and line number where error occurred

char file[80];

int lineNum;

};

class InvalidArgumentException: public Exception

{

public:

InvalidArgumentException(int arg, char* pFile, int nLine):

Exception("Invalid argument", pFile, nLine)

{

invArg = arg;

}

int argument()

{return invArg;}

virtual void display(ostream& out)

{

Exception::display(out);

7



out << "Argument was " << argument() << endl;

}

protected:

int invArg;

};

//factorial - compute factorial

int factorial(int n)

{

// you can't handle negative values of n

if (n < 0)

{

int ErrorCode = -1;

// Throw Exception class

throw Exception("Argument for factorial negative", __FILE__,__LINE__);

// __FILE__ and __LINE__ are intrinsic #defines that are set to the

// name of the source file and the current line number in that file,

// respectively.

}

else if(n>100)

{

// Throw derived class

throw InvalidArgumentException(n,__FILE__,__LINE__);

}

// go ahead and calculate factorial

int accum = 1;

while (n > 0)

{

accum *= n;

n--;

}

return accum;

}

void main()

{

8



int result;

try

{

// this will generate an exception and throw the derived class

result = factorial(150);

cout << "Factorial of 150 is " << result << endl;

// this will generate an exception

result = factorial(-1);

cout << "Factorial of -1 is " << result << endl;

// control will never get here

cout << "Factorial of 10 is " << factorial(10) << endl;

}

// control passes here

catch(Exception& x)

{

//use the built-in display member function

x.display(cerr);

}

}

Suppose that InvalidArgumentException is thrown. If we had written catch(Exception x),
we would only get the base class portion of InvalidArgumentException due to slicing.
If we pass Exception by value, the default copy constructor for the base class is used to
copy the base class part of InvalidArgumentException to catch. To avoid slicing, we
pass Exception by reference.

9


