
LECTURE 9

Aside: Maxwell Velocity Distribution
Before we talk about the laser cooling of atoms, I just want to mention that if you

have a gas of atoms in equilibrium, and you treat them as classical particles, then they
will have Maxwell{Boltzmann statistics (� e��E). In particular, their energies are kinetic
energies (E = 1

2
mv2), so that their velocity distribution is given by

P (v) = Ce��mv2=2 (1)

where � = 1=kBT and C is a constant that can be determined from the normalization
condition. Notice that the velocity distribution is a Gaussian centered at v = 0 (the gas
isn't going anywhere in particular) and that a range of velocities are represented.

Laser Cooling
(References: Nobel lectures of Chu, Cohen{Tannoudji, and Phillips, Rev. Mod. Phys.

70, 685{742 (1998).)
Lasers are reminiscent of the ray guns that one sees in science �ction movies. As we
mentioned in the last lecture, a laser with less power than a typical light bulb can burn a
hole through a metal plate. However, in recent years, lasers have been used, not to heat,
but to cool atomic gases to the lowest temperatures that man has been able to achieve:
a few nanokelvin above absolute zero. I want to describe some the tricks that have been
devised to accomplish this cooling. These developments are the basis of the 1997 Nobel
prize in physics which was awarded to Steven Chu, Claude N. Cohen{Tannoudji, and
William Phillips.

We mentioned in lecture 4 that light can apply radiation pressure to matter. This
gives comets their tails. Microscopically when an atom absorbs a photon of energy h�,
it will receive a momentum impulse h�=c along the direction of the incoming photon ~pin
(pin = h�=c). In order to absorb a photon of frequency �, the atom must have an allowed
transition between 2 energy levels where �E = h�. If the atom emits a photon with
momentum ~pout, the atom will recoil in the opposite direction. Thus the atom experiences
a net momentum change �~patom = ~pin � ~pout due to this incoherent scattering process.
Since the scattered photon has no preferred direction, the net e�ect is due to the absorbed
photons, resulting in a scattering force ~Fscatt = N~pin, where N is the number of photons
scattered per second. Typical scattering rates for atoms excited by a laser tuned to a
strong resonance line are on the order of 107 to 108/sec. As an example, the velocity of a
sodium atom changes by 3 cm/sec per absorbed photon. The scattering force can be 105

times the gravitational acceleration on earth, feeble compared to electromagnetic forces
on charged particles, but stronger than any other long{range force that a�ects neutral
particles.

Doppler Cooling
Recall how the doppler shift works. If you move along a beam of light toward its

source with velocity v, the light is blue shifted. This is because the distance a wave
travels in one period T of oscillation is cT while the distance you move in one period is
vT . You can think of vT as the amount by which a wavelength is squeezed. The doppler



shifted wavelength is

�0 = cT � vT = (c� v)T =
c� v

�
(2)

Notice that this is shorter (bluer) than the original wavelength. The doppler shifted
frequency is higher and is given by

� 0 =
c

�0
= �

�
c

c� v

�
(3)

If you move away from the source of light, then the light is red shifted. Just change
v ! �v in the above equations to see that the wavelength gets longer and the frequency
drops. The red shift of the spectral lines from stars and galaxies is how we know that
the universe is expanding.

Now let's apply this to laser cooling. Take 2 identical laser beams counterpropagating
in opposite directions. Let's put some atoms in the beams' path and tune the lasers below
the atomic resonance. If the atoms are standing still, they won't absorb any photons
because the frequency is less than what is needed for electrons to make a transition to a
higher energy level. But a moving atom doppler shifts the beam opposing its motion closer
to resonance and shifts the beam co{propagating with the motion away from resonance.
So chances are that it will absorb more photons from the beam opposing its motion than
from the beam in the direction of its motion. Thus the atom will experience a net force
opposing its motion. By slowing the atoms down, we are cooling them. In the limit
where atoms are moving slowly enough so that the di�erence in the absorption due to
the Doppler e�ect is linearly proportional to the velocity, this force will result in viscous
damping ~F = ��~v. We can upgrade to 6 laser beams pointed at the origin, with each
pair of counterpropagating beams along one of the coordinate axes x, y, and z. There is
also a heating e�ect due to the random kicks an atom receives by randomly scattering
photons from counterpropagating beams that surround the atoms. Scattering consists
of absorbing a photon and then emitting another photon in some random direction and
recoiling as a result. Balancing the e�ects of heating and cooling, one gets an estimate
of how cold the atoms can get. For alkali atoms the temperature is of order 100 �K. Not
only does the laser light cool the atoms, it also tends to con�ne them. An atom receiving
random kicks in a viscous medium is analogous to the Brownian motion of a dust particle
immersed in water. In the laser case, the viscous medium is a sea of photons which have
been dubbed \optical molasses." The �rst experiments showing that optical molasses
works was done by Steve Chu and his collaborators. They achieved a temperature of 185
�K.

Sisyphus Cooling
100 �K may sound pretty cold, but laser cooling can get even colder thanks to the

Sisyphus e�ect. To understand this e�ect, let's �rst consider the following case of optical
pumping. It uses resonant excitation of atoms by circularly polarized light for transferring
to the atoms part of the angular momentum carried by the light beam. It is based on
the fact that di�erent Zeeman sublevels in the atomic ground state have in general
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di�erent absorption rates for incoming polarized light. (Notation: �+�polarized light
has positive helicity and the photons carry +1 angular momentum. If you face the
oncoming wave, the polarization vector rotates counterclockwise and the wave is left{
circularly polarized. Similarly ���polarized light has negative helicity, the photons carry
�1 angular momentum, and it is right{circularly polarized. � polarized light is linearly
polarized light which is a linear combination of �+ and �� and carries no net angular
momentum.)
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For example, for a Jg = 1=2 $ Je = 1=2 transition, only atoms in the sublevel
Mg = �1=2 can absorb �+�polarized light. They are excited into the sublevelMe = +1=2
of Je = 1=2 from which they can fall back into the sublevel Mg = +1=2 by spontaneous
emission of a linearly polarized photon. They then remain trapped in this state because
no further �+�transition can take place. It is possible in this way to obtain high degrees
of spin orientation in atomic ground states. Because of this coupling between the Mg =
�1=2 sublevel and the excited state via �+ photons, the energy of theMg = �1=2 sublevel
is shifted. Similarly Mg = +1=2 atoms can absorb ���polarized light and be excited
into the Me = �1=2 sublevel from which they can fall back into the sublevel Mg = �1=2
by spontaneous emission of a linearly polarized photon. Thus the Mg = +1=2 sublevel
has its energy shifted.
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Now consider a laser con�guration consisting of 2 counterpropagating plane waves
along the z axis, with orthogonal linear polarizations and with the same frequency and
the same intensity. Because the phase shift between the 2 waves increases linearly with
z, the polarization of the total �eld changes from �+ to �� and vice versa every �=4. In
between it is elliptical or linear.

Consider now the simple case where the atomic ground state has an angular momen-
tum Jg = 1=2. The two Zeeman sublevels Mg = �1=2 undergo di�erent energy level
shifts (called \light shifts") depending on the laser polarization, so that the Zeeman de-
generacy in zero magnetic �eld is removed. This gives the energy diagram showing spatial
modulations of the Zeeman splitting between the two sublevels with a period �=2.

When the atom absorbs a photon followed by spontaneous emission of a photon,
optical pumping transfers between the two sublevels occurs with the direction depending
on the polarization: Mg = �1=2!Mg = +1=2 for �+ polarization,Mg = +1=2!Mg =
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�1=2 for �� polarization. Here also, the spatial modulation of the laser polarization
results in a spatial modulation of the optical pumping rates with a period of �=2.
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Spatial modulation of the light polarization results in correlation between the spatial
modulation of light shifts and optical pumping rates. By properly tuning the frequency of
the laser light, optical pumping always transfers atoms from the higher Zeeman sublevel
to the lower one. One always loses energy. Suppose now that the atom is moving to the
right, starting from the bottom of an energy valley, for example in the state Mg = +1=2
at a place where the polarization is �+. As the atom climbs the potential energy hill,
its kinetic energy is converted into potential energy. At the top of the hill it has the
maximum probability to be optically pumped into the lower sublevel, i.e., the bottom of
the energy valley. And the process starts all over again. This is like the story of Sisyphus
in Greek mythology, who was condemned by the gods to roll the stone up the hill, only
to have it roll back down before he reached the top. He would then have to start all
over again. Dissipation occurs because the spontaneously emitted photon has an energy
higher than the absorbed photon. (This is an example of an anti{Stokes Raman process.)
So the atom is always losing energy and hence is being cooled. Using Sisyphus cooling,
temperature of a few �K can be achieved. Cooling is further aided by the fact that one
can arrange it so that when an atom has velocity v ' 0, it no longer absorbs light, and
so won't be heated by photon absorption. This is called subrecoil laser cooling.

(In case you're wondering why an atom at the top of the hill (in the Mg = +1=2, say)
doesn't make a direct transition into the valley (to the Mg = �1=2, say) and avoid the
trouble of making an intermediate stop in the excited state, it's because the density of
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�nal states is too small. Recall Fermi's Golden Rule from lecture 6:

Rf i =
2�

�h
j < f jHji > j2 N(E) (4)

where N(E) is the density of �nal states with energy E. Recall from lecture 1 that the
density of photon states N(!) � !2. The energy di�erence between Mg = +1=2 and
Mg = �1=2 is very small, so the density of �nal photon states is very tiny as well. This
makes the transition rate very small.)

Raman E�ect
In our discussion of the Sisyphus e�ect, we saw an example where the atom went from

one state to another via an excited state. The atom absorbed a photon of frequency �,
made a transition from state 1 to an excited state, then spontaneously emitted another
photon of frequency � 0 and made a transition down to state 2. The frequency di�erence
between the absorbed and emitted photons is � 0 � � = (E1 � E2)=�h. The scenario we
have just described is called the Raman e�ect. Raman scattering refers to the process
where the incident and emitted photons have a frequency di�erence that corresponds
to a characteristic frequency of the atom, molecule, or solid. In some cases the fre-
quency di�erence corresponds to a phonon (vibrational quantum) or, for molecules, to a
characteristic rotational frequency.

Bose{Einstein Condensation and Super
uidity
(Reference: Robert B. Leighton, Principles of Modern Physics, McGraw{Hill (1959).)

Interesting things happen at very low temperatures and Bose{Einstein condensation
is one of them. Recall that there is no statistical limit to the number bosons that can
occupy a single state. In a Bose condensed state, an appreciable fraction of the particles
is in the lowest energy level at temperatures below TC . These particles are in the same
state and can be described by the same wavefunction. In other words a macroscopic
number of particles are in one coherent state. (We saw this in the case of the photons in
a laser beam.) If we write  = j jei�, then this state is described by a given phase �.

The oldest known physical manifestation of Bose condensation is super
uid 4He. A
4He atom has total angular momentum zero and is therefore a boson. At TC = 2:18
K liquid helium becomes super
uid. The transition temperature is called the ��point
because the shape of the speci�c heat curve at TC is shaped like �. One cools liquid
helium by pumping on it to get rid of the hot atoms (evaporative cooling). It boils a
little. Then at the transition it boils vigorously and suddenly stops. Eisberg and Resnick
has a picture of this on page 403. The reason for this behavior is that the thermal
conductivity increases by a factor of about 106 at the transition, so that the super
uid is
no longer able to sustain a temperature gradient. To make a bubble, heat has to locally
vaporize the 
uid and make it much hotter than the surrounding 
uid. This is no longer
possible in the super
uid state.

Perhaps the hallmark of a super
uid is that it has no viscosity. As a result the
super
uid can 
ow through tiny capillary tubes that normal liquid can't get through.
Super
uid 4He is often described by a two{
uid model, i.e., it is thought of as consisting of
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2 
uids, one of which is normal and the other is super
uid. It's the super
uid component
which is able to 
ow through the capillary tube. So if you use this method to measure
the coe�cient of viscosity, you �nd that it suddenly drops to zero at the ��point.

One can see the e�ect of both components by putting a torsional oscillator consisting
of a stack thin, light, closely spaced mica disks immersed in the liquid. If the liquid has a
high viscosity, the liquid between the disks is dragged along and contributes signi�cantly
to the moment of inertia of the disks. If the viscosity is small, the moment of inertia
is more nearly equal to that of the disks alone. Using this method, no discontinuity is
found in the coe�cient of viscosity at the ��point.

Another weird thing that super
uid helium does is escape from a beaker by crawling
up the sides, 
owing down the outside, and dripping o� the bottom. The helium atoms
are attracted by the van der Waals forces of the walls of the container, and they are able
to 
ow up the walls because of the lack of viscosity. The rate of 
ow can be 30 cm per
second or more. The super
uid helium can surmount quite a high wall, on the order of
several meters in height.

(Brief aside to explain the van der Waals force: As an electron moves in a molecule,
there exists at any instant of time a separation of positive and negative charge in the
molecule. The latter has, therefore, an electric dipole moment p1 which varies in time.
If another molecule exists nearby, it will have a dipole moment induced by the �rst
molecule. These two dipoles are attracted to each other. This is the van der Waals
force.)

We can show mathematically that there is a macrosopic population of the lowest
energy state in the following way. Consider a gas of noninteracting bosons. Let the
energy levels be measured from the lowest energy level, i.e., let the zero point energy
be the zero of energy. Then the chemical potential � must be negative, otherwise the
Bose{Einstein distribution would be negative for some of the levels. Recall from lecture
3 that the Bose{Einstein distribution gives the average number of particles in state s:

< ns >=
1

e�(Es��) � 1
(5)

� is adjusted so that the total number of particles is N :

N =
X
s

< ns > (6)

Let me give a sneak preview: If we assume a continuous distribution of states, � starts
out negative and gets bigger as the temperature decreases. � equals its upper limit of
zero at some temperature TC , below which we can no longer satisfy (6) because the right
hand side can't deliver enough particles. This leads us to treat the lowest energy level
separately and we �nd that we can satisfy (6) by keeping the extra particles we need in
the lowest state.

Now let's do the math. In order to turn the sum over s in (6) into an integral, let's
assume a continuous density of states. In lecture 1 we found that if k{space is isotropic,
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i.e., the same in every direction, then the number of states in a spherical shell lying
between radii k and k + dk is

�kdk =
V

(2�)3
(4�k2dk) =

V

2�2
k2dk (7)

Now if the energy of the bosons is purely kinetic energy and continuous, then

E =
�h2k2

2m
(8)

and

dE =
�h2kdk

m
(9)

or

kdk =
mdE

�h2
(10)

Also (8) implies that

k =

p
2mE

�h
(11)

Plugging (10) and (11) into (7) yields

�EdE = V

 
m3

2

!1=2
E1=2

�2�h3
dE (12)

So we can rewrite (6) as

N =
Z 1

e�(E��) � 1
�EdE

=
V

�2�h3

 
m3

2

!1=2 Z
1

0

E1=2

e�(E��) � 1
dE

Now recall that for a geometric series

1X
p=0

e�p�(E��) =
1

1� e��(E��)
(13)

So
1

e�(E��) � 1
=

1

1� e��(E��)
1

e�(E��)
=

1

e�(E��)

1X
p=0

e�p�(E��) (14)

Plugging this into (13) leads to

N =
V

�2�h3

 
m3

2

!1=2 Z
1

0
E1=2e��(E��)

1X
p=0

e�p�(E��)dE (15)
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Let x = �E. Then

N =
V

�2�h3

 
m3

2

!1=2

(kBT )
3=2

1X
p=0

e�(p+1)�
Z
1

0
x1=2e�(p+1)xdx (16)

Let s = p+ 1 and y = sx. Then

N =
V

�2�h3

 
m3

2

!1=2

(kBT )
3=2

1X
s=1

e�s�
1

s3=2

Z
1

0
y1=2e�ydy (17)

The de�nition of a gamma function is

�(n) =
Z
1

0
yn�1e�ydy n > 0 (18)

So Z
1

0
y1=2e�ydy = �(

3

2
) (19)

Thus

N =
V

�2�h3

 
m3

2

!1=2

�(
3

2
)(kBT )

3=2
1X
s=1

 
e�s�

s3=2

!
(20)

Now on the right hand side, as the temperature T decreases, � must increase to keep the
product constant and equal to N . T can be made as small as we wish, but �, which we
said must be negative, cannot be greater than zero. But the product must be a constant.
So (20) is only valid above a certain critical temperature TC . Below this temperature,
our treatment breaks down. Where did we go wrong? The 
aw lies in the fact that we
assumed that the states are continuously distributed. However, since we are interested
in very low temperatures which involves the occupation of the lowest lying energy levels,
we may expect that the actual discrete nature of the level distribution might play an
essential role in the lowest temperature range. So let us treat the lowest level E1 = 0
separately. We will assume that it is not degenerate with any other levels and we will
assume that the remaining levels are continuously distributed from E = 0 to E =1 as
described by (12). So in our summation (6) we will treat the lowest level separately:

N =
1

e��� � 1
+

V

�2�h3

 
m3

2

!1=2 Z
1

0

E1=2

e�(E��) � 1
dE

=
1

e��� � 1
+
�
T

TC

�3=2
f(�)N (21)

(22)

where the second quantity on the right is just the right hand side of (20), written in
terms of the critical temperature TC . f(� = 0) = 1 because TC is de�ned such that the
right hand side of (20) equals N with T = TC and � = 0.
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We see that it is now possible to satisfy this new equation with negative values of �
for all temperatures, since the �rst term becomes in�nite as �! 0. The inclusion of the
lowest energy level as a separate term in our treatment has thus removed the previous
di�culty of not being able to account for all of the particles at temperatures below TC .
If we now inquire into what this equation means physically, we see that, at temperatures
below TC , the chemical potential � will take on such values that those particles which
are not included in the continuous distribution will be found in the lowest level. That is,
a kind of condensation occurs; it is such that an appreciable fraction of the particles is
in the lowest energy level at temperatures below TC .

If we write (22) as

N = n1 +
�
T

TC

�3=2
f(�)N (23)

and realize that f(� � 0) � 1 at low temperatures, then we �nd the population n1 of
the lowest level to be, approximately,

n1 = N

"
1�

�
T

TC

�3=2#
(24)

At T = TC , n1 = 0 while at T = 0, n1 = N . Using n1 = (e��� � 1)�1, we �nd that at
low temperatures

� = �kBT ln
�
1

n1
+ 1

�
(25)

Notice that � is negative. As T ! 0, �! 0:

�(T ! 0)! �0+ ln( 1
N

+ 1)! 0 as N !1 and T ! 0 (26)

Considering super
uid helium as a 2 component 
uid with normal and super
uid
components is consistent with having some of the particles in the lowest energy level and
the rest in higher energy levels. There is no microscopic theory of super
uid helium,
though computer simulations by Ceperley have been quite successful in reproducing its
properties. One of the complications is that the helium atoms are so closely packed that
they are strongly interacting; they're in a liquid state. It would be closer to the ideal
case to have a system of bosons which are weakly interacting.

(Reference: H.{J. Miesner and W. Ketterle, \Bose{Einstein Condensation in Dilute
Atomic Gases," Solid State Communications 107, 629 (998) and references therein.)
This has recently been achieved in the case of alkali atoms such as rubidium, sodium,
and lithium. Using a combination of optical and magnetic traps together with laser cool-
ing and evaporative cooling, several research groups have achieved Bose condensation in
dilute weakly interacting vapors of alkali atoms. In these systems the thermal deBroglie
wavelength exceeds the mean distance between atoms. Nanokelvin temperatures and
densities of 1015 cm�3 have been achieved. (Compare this to a mole of liquid which
has a typical density of 1023 cm�3.) At nanokelvin temperatures the thermal deBroglie
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wavelength exceeds 1 �m which is about 10 times the average spacing between atoms.
In these experiments they have actually been able to directly observe the macroscopic
population of the zero momentum eigenstate. In addition the coherence resulting from
being in macroscopic wavefunctions has been demonstrated by observing the interfer-
ence between two independent condensates. Two spatially separated condensates were
released from the magnetic trap and allowed to overlap during ballistic expansion of the
gases. Interference patterns were observed that are analogous to the pattern produced
in a double{slit experiment in optics.
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