
LECTURE 5

The One{Electron Atom
The problem with Bohr's theory is that it postulates an electron whizzing around

the nucleus with a velocity v and centripetal acceleration v2=r. Classical electromagnetic
theory tells us that when a charged particle is accelerated, it must radiate and lose energy.
So Bohr's electron should be radiating and losing energy which doesn't sound very stable.
To treat the electron properly, we need to use quantum mechanics. Let's start by writing
down Schrodinger's equation:

H = E (1)

(I'm going to drop the little hat on H. Just remember that it's an operator.) Let's
just consider a one electron atom so that we don't have to worry about the interactions
between electrons. The Hamiltonian is

H =
p2

2m
� Ze2

r
(2)

where r is the distance from the nucleus, Z is the number of protons (i.e., the atomic
number), and m is the mass of the electron. The �rst term is the kinetic energy of the
electron and the second term is the potential energy of the electron interacting with the
nucleus via the Coulomb interaction. Since p is an operator (see lecture 1), we can write

H = � �h2

2m
r2 � Ze2

r
(3)

It's always a good idea to look for symmetries before plunging into a problem. So let's do
that. The potential produced by the nucleus is spherically symmetric. It is called a central
potential. The spherical symmetry means that we should use spherical coordinates � and
�. Spherical symmetry means that orbital angular momentum will be associated with
good quantum numbers ` and m. So we expect to be able to label the di�erent  's with
` and m. Here m is the z-component of `. It turns out that if you write (3) in spherical
coordinates, it is separable into 3 di�erential equations: one for r, one for �, and one for
�. Let R(r), �(�), and �(�) be the solutions of these three equations. Then the total
wavefunction can be written as a product:

 (~r) = AR(r)�(�)�(�) (4)

where A is a constant. We won't go through all the math needed to solve the Schrodinger
equation. Rather I'll just write down the answer. The energy eigenvalues are

En = �mZ
2e4

2�h2n2
(5)

Notice that the energy eigenvalues are quantized. n is called the principal quantum
number. n = 1; 2; 3; ::: It is associated with the radial part of the wavefunction. n can
be thought of as labeling the atomic orbital shells; the larger n is, the farther away the



shell is from the nucleus. The radius of a shell is roughly na where a is very close to the
Bohr radius in size. The radial part of the wavefunction has an exponential factor:

Rn`(r) � e�Zr=na (6)

Notice that the exponential factor means that the probability that an electron is located
beyond a distance na falls o� exponentially. When Z = 1 and n = 1, eq. (5) reduces to
{1 Rydberg:

E0 = �me
4

2�h2
= �13:6 eV = �1 Rydberg (7)

This is a good energy to remember. It sets an upper bound for how tightly electrons are
bound to a nucleus.

The energy eigenfunctions are

unlm = An`mRn`(r)P
m
` (cos �)e�im� (8)

The actual functions for various values of n, `, and m are given in Eisberg and Resnick
on page 243. Here we see that the orbital angular momentum quantum numbers are
associated with the angular part of the wavefunction. For a given value of n, the values
of ` are

` = 0; 1; 2; 3; :::(n� 1) (9)

By convention the ` = 0 sublevel corresponds to an s orbital, ` = 1 to a p orbital, ` = 2
to a d orbital, and ` = 3 to an f orbital. These spectroscopic notations are the initial
letters of adjectives formerly used to describe spectral lines: sharp, principal, di�use, and
fundamental. The spectral lines were discovered before people realized where the lines
came from. For ` values larger than 3, the letters used proceed alphabetically: g, h, i, k,
l, etc. (Note that j is omitted.) For each value of ` there are (2`+ 1) values of m:

m = �`;�` + 1; :::; `� 1; ` (10)

Notice that the energy eigenvalues (5) are independent of ` and m. This means that for
a given value of n, there n2 degenerate orbitals which di�er in their values of ` and m.
Various e�ects which we haven't included in the Hamiltonian can split this degeneracy.
For example, if the atom is in a magnetic �eld, the m levels are split. This is known as
the Zeeman e�ect and m is known as the magnetic quantum number. If we include the
spin of the electron, the maximum number of electrons that can reside in a given energy
level is 2n2.

Let's look at the shapes of these various orbitals. The energy eigenfunctions are
orthogonal and this helps to determine the shapes they can have. By orthogonal, I mean
that they must satisfy

Z
d3ru�n`m(~r)un0`0m0(~r) = �nn0�``0�mm0 (11)
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where �nn0 = 1 if n = n0 and �nn0 = 0 if n 6= n0. (The fact that the eigenfunctions are
normalized to unity means that they are actually orthonormal.) The n = 1 level has
a single 1s orbital that is a spherically symmetric ball with no nodes. (It's a nonzero
constant at r = 0.) The 2s orbital is also spherically symmetric but it has a node at
r = 2a=Z due to orthogonality. (A node is a place where the wavefunction is zero.)
There are three 2p orbitals, and each has a nodal plane passing through the nucleus at
the origin. Each p orbital consists of two lobes that may be considered to be oriented
along the x, y, or z axis; hence, they have the designations 2px, 2py, and 2pz. The
2pz orbital corresponds to the n = 2, ` = 1, m = 0 orbital. The 2px and 2py orbitals
correspond to symmetric and antisymmetric linear combinations of the n = 2, ` = 1,
m = 1 and n = 2, ` = 1, m = �1 orbitals. For n = 3, there is a 3s orbital, three 3p
orbitals, and �ve 3d orbitals (3dx2�y2 , 3dz2, 3dxy, 3dxz, and 3dyz). The shape of the 3dz2
orbital is di�erent from the others, but all these orbitals are energetically equivalent.

Each electronic state is labelled by 4 quantum numbers: n, `, m, and sz. The Pauli
exclusion principle prohibits 2 electrons from having the same set of quantum numbers.
If 2 electrons have the same n, `, m, then one is spin up and the other is spin down.

Spin{Orbit Coupling
Spin{orbit coupling refers to the coupling between the spin of an electron in an atom

and its orbital angular momentum. It arises from relativistic e�ects and leads to a slight
splitting of the degenerate energy levels for a given value of n. There are 2 contributions
to spin{orbit coupling. The �rst comes from the fact that the spin of the electron is
associated with a magnetic moment ~� (see lecture 2) that couples to any magnetic �elds
that might be present. As the electron moves through the nuclear electric �eld, it sees
both a magnetic and an electric �eld. Special relativity says that an electric �eld in a
stationary reference frame looks like an electric and a magnetic �eld in a moving frame.

~B0 = �1

c
~v � ~E (cgs) (12)

This magnetic �eld couples to the electron's magnetic moment and the magnetic moment
precesses about the magnetic �eld that it sees. This is Larmor precession. This is one
way that orbital motion couples to the electron's spin.

The other way is called Thomas precession. It too is a relativistic e�ect. Because of
time dilation an observer at the nucleus and an observer at rest on the electron would
disagree about the amount of time it takes for one particle to make a complete revolution
about the other. If the observer on the electron calls this time interval T , then an observer
on the nucleus will �nd it to be T 0 = 
T , where 
 = (1 � v2=c2)�1=2 and v is the speed
of the electron about the nucleus. Now, in the rest frame of the electron, the spin vector
maintains its direction in space, so that to the observer on the nucleus, this spin vector
appears to precess at a rate equal to the di�erence between the two angular velocities
2�=T and 2�=T 0. The Thomas precession frequency turns out to be half that of the
Larmor precession frequency and of the opposite sign.

Both of these e�ects couple the electron spin to its orbital motion. Putting these two
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e�ects together leads to a spin{orbit coupling term in the Hamiltonian:

H = � �h2

2m
r2 � Ze2

r
+

Ze2

2m2c2r3
~S � ~L (13)

where ~S �~L is an operator with units of angular momentum squared (�h2). This extra term
in the Hamiltonian splits the degenerate energy level for a given value of n into several
degenerate levels. The splittings are of order 1 part in 104. (�E � jEnj�2, where the
�ne structure constant � = e2=�hc � 1=137. So �2 � 1=20; 000.) These small splittings
lead to �ne structure in the spectral lines.

Because spin and orbital angular momentum are coupled together Lz and Sz are not
conserved, though L2 and S2 are conserved. ([S2; H] = [L2; H] = 0 but [Sz; H] 6= 0
and [Lz; H] 6= 0). So ` and s are good quantum numbers, but m` and ms are not. But

the total angular momentum ~J = ~L + ~S is conserved and therefore, j and mJ are good
quantum numbers. (see lecture 2)

Many Electron Atom
Other sources of energy level splitting

There are several other sources of electron level splitting. For example, there is also
another small relatistic correction to the energy due to the fact that in special relativity,
the energy

E =
q
p2c2 +m2c4 (14)

This shifts the energy levels by the same order of magnitude as spin{orbit coupling.
When there are many electrons, dipole{dipole (spin{spin) interactions between the

electrons as well as the electrostatic Coulomb interactions between them lead to energy
splittings.

Russell{Saunders or LS Coupling
The relative strengths of these e�ects varies depending on what kind of atom we have.

In some cases spin{orbit e�ects are quite small compared to spin{spin and electrostatic
interactions between the electrons. In this case LS or Russell{Saunders coupling is a good
place to start. In this coupling it is assumed that the individual orbital angular momenta
`i are quite strongly coupled together, as are the individual spin angular momenta si. So
`i and si are not good quantum numbers. (Here `i is the orbital angular momentum of
the ith electron and si is the spin angular momentum of the ith electron.) However, the

total orbital angular momentum ~L =
P

i `i of all the electrons and the total spin angular
momentum ~S =

P
i si of all the electrons are close to being good quantum numbers. The

resultant ~L and ~S are less strongly coupled to each other and their resultant is ~J .
Hund's Rule

Atomic levels may have the same electron con�guration (e.g., 4p 4d) but di�erent
total L and S. Hund's rule is an empirical principle concerning the relative position of
levels with the same con�guration but di�erent L and S: The term with the greatest
possible value of S (for the given electron con�guration) and the greatest possible value of
L (for this S) has the lowest energy. In other words, Hund's rule states that electrons are
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distributed among the orbitals of a subshell in a way that gives the maximum number
of unpaired electrons with parallel spins, and the maximum value of the orbital angular
momentum L consistent with this S. The value of the total angular momentum J is
equal to jL� Sj when the shell is less than half full and to L+ S when the shell is more
than half full. When the shell is exactly half full, the maximization of the S gives L = 0,
so that J = S.

For example, suppose there are four equivalent d electrons outside the closed shells
in an atom. The magnetic quantum number of each d electron can take �ve values: 0,
�1, �2. Hence all four electrons can have the same spin component ms = 1=2, and
the maximum possible total spin is S = 2. Now we must assign the maximum value of
ML =

P
`m`, namely m` = 2; 1; 0;�1. This implies that ML = 2. Thus the maximum

value of L for S = 2 is also 2. The shell is less than half full (there can be up to 10 d
electrons), so J = jL� Sj = 0.

Another example would be nitrogen which has 3 electrons in the 2p orbitals. The
electronic con�guration is 1s2 2s2 2p1x 2p1y 2p1z. Notice that the electrons distribute
themselves among the p orbitals rather than bunching up in, say, 2p2x 2p1y 2p0z. The
standard way to write the electronic con�guration of nitrogen is 1s2 2s2 2p3 where it is
understood that the electrons will spread out among the orbitals.

To understand why S should be as large as possible, let us suppose that the total
wavefunction  for the electrons can be written as the product of a spin wavefunction �s
and a space wavefunction �r.

 (1; 2; :::; N) = �s(s1; s2; :::; sN)�r(r1; r2; :::; rN) (15)

where si is the spin coordinate of the ith electron and ri is the spatial coordinate of the ith
electron. Since electrons are fermions,  must be antisymmetric under the interchange
of any 2 particles.

 (1; 2; :::; r; :::; s; :::; N) = � (1; 2; :::; s; :::; r; :::; N) (16)

We can satisfy this by having �s symmetric and �r antisymmetric or vice{versa. For
example, if we have 2 electrons, they can be in a singlet (S = 0) or a triplet (S = 1)
state. The triplet state has a symmetric spin wavefunction and an antisymmetric spatial
wavefunction.

�S=1;ms=1 = ""
�S=1;ms=0 =

1p
2
["# + #"]

�S=1;ms=�1 = ##

and

�r =
1p
2
(�a(r1)�b(r2)� �a(r2)�b(r1)) (17)
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The singlet state has an antisymmetric spin wavefunction and a symmetric spatial wave-
function.

�S=0;ms=0 =
1p
2
["# � #"] (18)

and

�r =
1p
2
(�a(r1)�b(r2) + �a(r2)�b(r1)) (19)

The nodes in the antisymmetric spatial wavefunction of the triplet helps to keep the
electrons apart and reduce the Coulomb repulsion much more than the symmetric spatial
wavefunction of the singlet. This tends to be true in general since larger spin tends to
be associated with more nodes in the spatial wavefunction.

Spectroscopic Notation
The energy eigenstates of almost all atoms can be described in terms of a quantum

number L which de�nes the net orbital angular momentum of all the electrons, a quantum
number S which de�nes the net spin angular momentum of all of the electrons, and a
quantum number J which de�nes the total angular momentum ~J = ~L + ~S. L is always
an integer, and S is integral or half{integral depending upon whether the total number
of electrons in the atom is even or odd. In this general case the multiplicity of the level
is equal to 2S + 1 or 2L+ 1, whichever is smaller.

Spectroscopic notation for labeling the energy eigenstates has the following form:

2S+1(L)J (20)

Since it is most often the case that S is smaller than L, so that the multiplicity is equal
to 2S+1, the preceding superscript has come to be always associated with S. This index
is always equal to 2S + 1, and is equal to the true multiplicity of the level only if S is
less than, or equal to, L. The value of the total angular momentum J for a given level
is indicated by the subscript. The numerical values of L are correlated with the letter
notation according to the table:

L 0 1 2 3 4 5 6 7 8 9 10

-----------------------------------------------------------------

Letter S P D F G H I K L M N

For an example consider the 4 equivalent d electrons that we showed had L = S = 2
and J = 0. The spectroscopic notation for this is state is 5D0. Another example is shown
in the �gure
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