
LECTURE 3

Maxwell{Boltzmann, Fermi, and Bose Statistics
Suppose we have a gas of N identical point particles in a box of volume V. When we

say \gas", we mean that the particles are not interacting with one another. Suppose we
know the single particle states in this gas. We would like to know what are the possible
states of the system as a whole. There are 3 possible cases. Which one is appropriate
depends on whether we use Maxwell{Boltzmann, Fermi or Bose statistics. Let's consider
a very simple case in which we have 2 particles in the box and the box has 2 single
particle states. How many distinct ways can we put the particles into the 2 states?

Maxwell{Boltzmann Statistics: This is sometimes called the classical case. In this
case the particles are distinguishable so let's label them A and B. Let's call the 2 single
particle states 1 and 2. For Maxwell{Boltzmann statistics any number of particles can
be in any state. So let's enumerate the states of the system:

Single Particle State 1 2

-----------------------------------------------------------------------

AB

AB

A B

B A

We get a total of 4 states of the system as a whole. Half of the states have the particles
bunched in the same state and half have them in separate states.

Bose{Einstein Statistics: This is a quantum mechanical case. This means that the
particles are indistinguishable. Both particles are labelled A. Recall that bosons have
integer spin: 0, 1, 2, etc. For Bose statistics any number of particles can be in one state.
So let's again enumerate the states of the system:

Single Particle State 1 2

-----------------------------------------------------------------------

AA

AA

A A

We get a total of 3 states of the system as a whole. 2/3 of the states have the particles
bunched in the same state and 1/3 of the states have them in separate states.

Fermi Statistics: This is another quantum mechanical case. Again the particles are
indistinguishable. Both particles are labelled A. Recall that fermions have half{integer
spin: 1/2, 3/2, etc. According to the Pauli exclusion principle, no more than one particle
can be in any one single particle state. So let's again enumerate the states of the system:

Single Particle State 1 2

-----------------------------------------------------------------------

A A



We get a total of 1 state of the system as a whole. None of the states have the particles
bunched up; the Pauli exclusion principle forbids that. 100% of the states have the
particles in separate states.

This simple example shows how the type of statistics in
uences the possible states of
the system.

Distribution Functions
We can formalize this somewhat. We consider a gas of N identical particles in a

volume V in equilibrium at the temperature T . We shall use the following notation:

� Label the possible quantum states of a single particle by r or s.

� Denote the energy of a particle in state r by "r.

� Denote the number of particles in state r by nr.

� Label the possible quantum states of the whole gas by R.

Since the particles in the gas are not interacting or are interacting weakly, we can describe
the state R of the system as having n1 particles in state r = 1, n2 particles in state r = 2,
etc. The total energy of the state is

ER = n1"1 + n2"2 + n3"3::: =
X
r

nr"r (1)

Since the total number of particles is N , then we must have

X
r

nr = N (2)

The partition function is given by

Z =
X
R

e��ER =
X
R

e��(n1"1+n2"2+:::) (3)

Here the sum is over all the possible states R of the whole gas, i.e., essentially over all
the various possible values of the numbers n1, n2, n3, ...

Now we want to �nd the mean number < ns > of particles in a state s. The < ::: >
refer to a thermal average. Since

PR =
e��(n1"1+n2"2+:::)

Z
(4)

is the probability of �nding the gas in a particular state where there are n1 particles in
state 1, n2 particles in state 2, etc., one can write for the mean number of particles in a
state s:

< ns >=
X
R

nsPR =

P
R nse

��(n1"1+n2"2+:::)

Z
(5)
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We can rewrite this as

< ns >=
1

Z

X
R

 
�
1

�

@

@"s

!
e��(n1"1+n2"2+:::) = �

1

�Z

@Z

@"s
(6)

or

< ns >= �
1

�

@ lnZ

@"s
(7)

So to calculate the mean number of particles in a given single{particle state s, we just
have to calculate the partition function Z and take the appropriate derivative. We want
to calculate < ns > for both Bose and Fermi statistics.

Bose{Einstein and Photon Statistics
Here the particles are to be considered as indistinguishable, so that the state of the

gas can be speci�ed by merely listing the number of particles in each single particle state:
n1, n2, n3, .... Since there is no limit to the number of particles that can occupy a state,
ns can equal 0,1,2,3,... for each state s. For photons the total number of particles is
not �xed since photons can readily be emitted or absorbed by the walls of the container.
Let's calculate < ns > for the case of photon statistics. The partition function is given
by

Z =
X
R

e��(n1"1+n2"2+:::) (8)

where the summation is over all values nr = 0; 1; 2; 3; ::: for each r, without any further
restriction. We can rewrite (8) as

Z =
X

n1;n2;:::

e��n1"1e��n2"2e��n3"3::: (9)

or

Z =

0
@ 1X
n1=0

e��n1"1

1
A
0
@ 1X
n2=0

e��n2"2

1
A
0
@ 1X
n3=0

e��n3"3

1
A ::: (10)

But each sum is a geometric series whose �rst term is 1 and where the ratio between
successive terms is exp(��"r). Thus it can be easily summed:

1X
ns=0

e��ns"s = 1 + e��"s + e�2�"s + ::: =
1

1� e��"s
(11)

Hence eq. (10) becomes

Z =
�

1

1� e��"1

��
1

1� e��"2

��
1

1� e��"3

�
::: (12)

or
lnZ = �

X
s

ln
�
1� e��"s

�
(13)
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So if we plug this into eqn. (7), we get

< ns >= �
1

�

@ lnZ

@"s
=

1

�

@

@"s
ln
�
1� e��"s

�
=

e��"s

1� e��"s
(14)

or

< ns >=
1

e�"s � 1
(15)

This is called the \Planck distribution." We'll come back to this a bit later when we talk
about black body radiation.

Photons are bosons, but their total number is not conserved because they can be
absorbed and emitted. Other types of bosons, however, do have their total number
conserved. One example is 4He atoms. A 4He atom is a boson because if you add the
spin of the proton, neutron, and 2 electrons, you always will get an integer. If the number
of bosons is conserved, then < ns > must satisfy the condition

X
s

< ns >= N (16)

where N is the total number of bosons in the system. In order to satisfy this condition,
one slightly modi�es the Planck distribution. The result is known as the Bose{Einstein
distribution

< ns >=
1

e�("s��) � 1
(17)

where � is the chemical potential. � is adjusted so that eq. (16) is satis�ed. Physically
� is the change in the energy of the system when one particle is added. Eqn. (17)
is called the Bose{Einstein distribution function or the Bose distribution function for
short. We will return to the Bose{Einstein distribution when we discuss Bose{Einstein
condensation.

Fermi{Dirac Statistics
Recall that fermions have half{integer spin statistics and that at most one fermion

could occupy a each single particle state. This means that ns = 0 or 1. We can easily
get some idea of what < ns > by considering the very simple case of a system with just
one single particle state. In this case

< ns >=

P
ns nse

��ns"sP
ns e

��ns"s
(18)

In this case the sums just have 2 terms. The denominator is

X
ns=0;1

e��ns"s = 1 + e��"s (19)

The numerator is X
ns=0;1

nse
��ns"s = 0 + e��"s (20)
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So we have

< ns >=
e��"s

1 + e��"s
(21)

or

< ns >=
1

e�"s + 1
(22)

For a real system we have many single particle states and many particles. The expression
for < ns > in this case must satisfy the condition that the number of particles is a
constant: X

s

< ns >= N (23)

The correct formula which satis�es this condition (23) is

< ns >=
1

e�("s��) + 1
(24)

This is called the Fermi distribution function. � is adjusted to satisfy the constraint (23).
As in the Bose{Einstein case, � is called the chemical potential. This is basically the same
as the Fermi energy. We will return to this when we discuss metals and superconductors.

n(E)

EE
F

T > 0

T = 0

Fermi Distribution Function

Classical Limit
We can summarize our results for the quantum statistics of ideal gases with

< ns >=
1

e�("s��) � 1
(25)

where the upper sign refers to Fermi statistics and the lower sign refers to Bose statistics.
If the gas consists of a �xed number of particles, � is determined by

X
s

< ns >=
X
s

1

e�("s��) � 1
= N (26)
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In general the number N of particles is much smaller than the total number of single
particle states s.

Let us consider 2 limiting cases. Consider the low density limit where N is very
small. The relation (26) can then only be satis�ed if each term in the sum over all states
is su�ciently small, i.e., if < ns >� 1 or exp[�("s � �)]� 1 for all states s.

The other case to consider is the high temperature limit. Since � = 1=kBT , the high
temperature limit corresponds to small �. Now if � were 0, we would have

X
s

1

1� 1
= N (27)

which is a disaster for both the Fermi{Dirac and Bose{Einstein cases. But � = 0 means
that T = 1. Let's assume that the temperature is high but not in�nite, so that � is
small but not 0. At high temperatures, lots of high energy states are occupied. By \high
energy," I mean that "s � �. In order to satisfy the �xed N constraint of eqn. (26), it
is necessary to have

exp[�("s � �)]� 1 (28)

such that
< ns >� 1 (29)

for all states s. (Remember that there are many more states s than particles N .) This is
the same condition that came up in the low density case. We call the limit of su�ciently
low concentration or su�ciently high temperature where (28) or (29) are satis�ed the
\classical limit." In this limit < ns > reduces to

< ns >= e��("s��) (30)

Plugging this into (26), we getX
s

< ns >=
X
s

e��("s��) = e��
X
s

e��"s = N (31)

or

e�� =
NP

s e��"s
(32)

Thus

< ns >= N
e��"sP
s e��"s

(33)

Hence we see that in the classical limit of su�ciently low density or su�ciently high tem-
perature, the Fermi{Dirac and Bose{Einstein distribution laws reduce to the Maxwell{
Boltzmann distribution. One can also show that the classical limit corresponds to the
case where the average distance between the particles is much larger than the size of the
mean de Broglie wavelength < � > associated with each particle

< � >= 2�
�h

< p >
(34)

where < p > is the mean momentum of a particle. Associating a wavelength with a
particle is part of wave{particle duality.
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