
LECTURE 12

Solid State Band Theory
Recall from lecture 7 that when atoms made chemical bonds to form molecules, their

atomic orbitals overlapped to create molecular orbitals whose energies were shifted rel-
ative to the energies of the original atomic orbitals. These energy shifts resulted from
interactions between the atoms. In particular the atoms must be close enough to each
other to transfer electrons between them. This is often called electron hopping. Now
suppose we put lots of atoms together in a regular periodic array to form a crystalline
lattice. There must be some interaction and electron transfer between the atoms in order
to hold the lattice together. It's like a giant molecule with 6 � 1023 atoms. Just as in
molecules, the bonding can be ionic, covalent, or metallic (delocalized). The electronic
energy levels in the solid are shifted relative to the levels in the atom. The number of
energy levels is conserved. So if there are N atoms in the solid, each with m energy
levels, then there are Nm energy levels in the solid (each of which can hold 2 electrons,
spin up and spin down).

Now let's consider how the energy levels are arranged. If the atoms had no interac-
tions, e.g., if they were very far apart, then the atomic energy levels would not be shifted
but would have a high degree of degeneracy, i.e., there would be N levels at each of the
atomic energy eigenvalues. Let's look at one energy where there are N degenerate levels.
As we turn on the interactions between the atoms, e.g., by bringing the atoms closer
together, this degeneracy is lifted and the levels spread out in energy. The maximum
spread will be of the order of the interaction energy. (This maximum spread in energy is
called the bandwidth.) Since there will be N levels packed into this range, the separation
between levels is quite small. As N !1, the energy level separation goes to zero. We
call this spread of levels a \band." The energy di�erence between the highest and lowest
levels is the \bandwidth."

It's often useful to plot the energy E versus wavevector k of the band. Let's start by
considering a free electron gas. In this case the system is isotropic, homogeneous, and
has complete translational symmetry. So the momentum ~k is a good quantum number.
For simplicity let's consider a one dimensional system. The energy is given by

E =
�h2k2

2m
(1)

This is a parabola.
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Now let's consider a crystal with a periodic array of atoms. Now we only have
discrete translational symmetry. Let a be the distance between 2 atoms in the lattice. a
is called the lattice constant. For simplicity, let's consider a one dimensional lattice of
length L = Na where N is the number of atoms in the lattice. As we saw in lecture 1
when we considered the case of periodic boundary conditions, we found that the allowed
wavevectors were

k =
2�n

L
=

2�n

Na
(2)

For example, if we have N = 4 sites, then ka = 0; �=2; �; 3�=2; 2�; etc. We would
replace our graph of E vs. k by discrete states with these lattice vectors. Periodic
boundary conditions in a one dimensional lattice amounts to having a ring. It's like a
pearl necklace with each pearl being a lattice site. There is a one{to{one correspondence
between the atoms in the lattice and the states in a band. Each atom contributes one
electronic level to each band. When n = Nm in (2),

k = G =
2�m

a
where m = 0; 1; 2; 3; ::: (3)

These values of the wavevector k are special. They are called reciprocal lattice vectors.
Let's denote reciprocal lattice vectors by G. Notice that

exp(iGa) = exp(i
2�m

a
a) = exp(i2�m) = 1 (4)

Just as the lattice looks the same if you translate by a lattice vector ~a or any of its
multiples, so in k�space, things look the same if you translate by a reciprocal lattice
vector G. So I could draw

E

kGG/20

Notice that the curves cross at G=2. This level degeneracy is split by the periodic
potential of the lattice of ions, resulting in band gaps:
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The magnitude of the gap is of the same order of magnitude as the periodic potential
(V (G)). So we have 2 bands which are separated by a gap:

GG/20 k

E

-G

This is the repeated zone scheme. Since translating by G doesn't add anything new,
we usually just draw:

0 π/2−π/2 aa

E

k

The range from �G=2 = ��=2a to G=2 = �=2a is called the �rst Brillouin zone.
So far we have been considering a lattice that is a periodic array of atoms. But rather

than just one atom on each lattice site, we could have something more complicated, like
2 atoms or a molecule or several atoms. This unit which is repeated periodically is called
a \unit cell." A unit cell can be just one atom or several atoms. If the unit cell is
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a molecule which retains some measure of its individual identity in the solid, then we
have a molecular solid. Each unit cell contributes exactly one independent value of k to
each energy band. Taking into account the 2 spin orientations of the electron, there are
2N independent levels in each energy band, where N is the number of unit cells in the
crystal.

Appendix: Another Way To Understand Reciprocal Lattice Vectors
Let ~a be a lattice vector that points from one lattice site to another. Translational

symmetry implies that if we move by a distance a, the lattice will look the same. The
electron wavefunctions obey this too. In other words we would expect the electron
wavefunction u~k(~r) to have the symmetry of the lattice:

u~k(~r + ~a) = u~k(~r) (5)

One can make things a bit more general by noting that we can multiply a wavefunction
by a phase factor exp(i~k � ~r) without a�ecting the physics. For example the electron
probability j j2 is unchanged by the phase factor. Matrix elements <  jÂj > are also

una�ected because exp(i~k � ~r) gets multiplied by its complex conjugate exp(�i~k � ~r). In
fact Bloch's theorem states that in a periodic lattice the electron wavefunction  ~k(~r)
must be of the form

 ~k(~r) = ei
~k�~ru~k(~r) (6)

where ~k can be any wavevector (not just an allowed lattice wavevector) and u~k(~r) has
the periodicity of the lattice: u~k(~r + ~a) = u~k(~r).

For simplicity, let's consider a one dimensional lattice of length L = Na where N is
the number of atoms in the lattice. As we saw in lecture 1 when we considered the case
of periodic boundary conditions, we found that the allowed wavevectors were

k =
2�n

L
=

2�n

Na
(7)

For example, if we have N = 4 sites, then ka = 0; �=2; �; 3�=2; 2�; etc. We would
replace our graph of E vs. k by discrete states with these lattice vectors. Now the values
of k where

k =
2�n

a
(8)

are special. They are called reciprocal lattice vectors. To see why they are special, let G
be a reciprocal lattice vector. Then

exp(iGa) = exp(i
2�n

a
a) = exp(i2�n) = 1 (9)

This just re
ects the fact that any function which is characterized by a wavevector G
has a periodicity that is in phase with the lattice, e.g., cos(Gr). If we multiply a Bloch
wavefunction by exp(iGr), then we just get another Bloch wavefunction:

eiGr k(r) = ei(k+G)ruk(r) = eikruk+G(r) (10)
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where uk+G(r) = exp(iGr)uk(r). You can show that uk+G(r) = uk+G(r + a).
Just as the lattice looks the same if you translate by a lattice vector ~a or any of its

multiples, so in k�space, things look the same if you translate by a reciprocal lattice
vector G.

Metals and Insulators
Now that we have bands of energy levels, we can put electrons in these energy levels.

If we have just the right number of electrons to completely �ll one (or more) bands but
not start a new band, then we have an insulator. (I am assuming that the empty band is
separated by a gap from the �lled band.) If we apply a small electric �eld, no current will

ow because there are no easily accessible empty states for the electrons to jump into. At
T = 0 the electrical resistance is in�nite. Since each unit cell contributes one energy level
which can hold 2 electrons to each band, if each unit cell contributes 2 valence electrons
to a band, then the band is full and we have an insulator. Diamond is an example of an
insulator. It has a band gap of 5.4 eV. There is another way to think about an insulator.
If we look at the bonds between the carbon atoms in diamond, we see that they are
covalent bonds. It is hard to get an electron to 
ow and carry current because it would
have to break a covalent bond and that takes a large amount of energy.

Let's go back to the band picture. If each unit cell contributes 1 valence electron to
a band, then the band will be half full, the Fermi energy will lie in the band, and the
system will be metallic. A solid with a partially �lled band is called a metal. In a metal
electrons can 
ow and carry current because electrons in �lled states below the Fermi
energy can easily jump to empty states above the Fermi energy. The energy di�erence
between the �lled and empty states can easily be supplied by the applied electric �eld
and thermal excitation.

Experimentally the way to tell the di�erence between a metal and an insulator is by
measuring electrical resistance. The di�erence between a good conductor and a good
insulator is striking. The electrical resistivity of a pure metal may be as low as 10�10

ohm{cm at a temperature of 1 K (ignoring the possibility of superconductivity). The
resistance of a good insulator may be as high as 1022 ohm{cm. This range of 1032 may
be the widest of any common property of solids.

In a metal, the resistivity increases linearly with increasing temperature because the
electrons scatter from phonons (lattice vibrations), and the number of phonons increases
with temperature.

T

ρ
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Semiconductors
Insulators whose band gaps are not too large are called semiconductors. In a semi-

conductor, a typical band gap is about 1 eV. Silicon has a band gap of 1.17 eV (indirect
gap) and germanium has a band gap of 0.744 eV (indirect gap). There are also III-V
semiconductors which are binary alloys consisting of one element from the third column
of the periodic table and one element from the �fth column of the periodic table. For
example, GaAs has a (direct) band gap of 1.52 eV. The band below the band gap is
called the valence band and the band above the band gap is called the conduction band.
As the temperature increases, the conductivity increases (and the resistivity decreases)
because electrons are thermally excited from the valence band into the conduction band.
The electrons in the conduction band are able to 
ow and carry current because there are
easily accessible empty states that an electron can jump into. The electrons that make
transitions into the conduction band from the valence band leave behind holes in the
valence band. These holes act like positively charged carriers that are able to contribute
to the electrical current.

electron

hole

Valence  Band

Band  Gap

Conduction  BandE

Photons can also be used to excite electrons from the valence band into the conduction
band. When electrons make transitions from the conduction band into the valence band
and recombine with holes, photons can be given o�. Semiconductor lasers take advantage
of this.

Semiconductors whose primary source of carriers comes from the direct excitation
of electrons from the valence band to the conduction band are called intrinsic semicon-

ductors. Most of the electrical current carriers in extrinsic semiconductors come from
impurities. These impurities produce states in the band gap which can supply electrons
to the conduction band or holes to the valence band. Most electronic devices use extrinsic
semiconductors that have been subjected to selective doping.
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Donors are impurities which contribute levels that are just below the conduction band
edge. They donate electrons to the conduction band which can contribute to electrical
conduction. Donors have more valence electrons than the host. For example, arsenide
(valence=5) is a donor impurity doped into the host semiconductor germanium (va-
lence=4). Acceptors are impurities which have less valence electrons than the host, e.g.,
gallium (valence=3) doped into germanium (valence=4). Acceptors contribute impurity
energy levels just above the valence band edge. They accept electrons from the valence
band, which leaves holes in the valence band that can contribute to electrical conduction.

If a semiconductor has primarily donor impurities, we call it an n{type semiconductor
because it has primarily negatively charged carriers. If a semiconductor has primarily
acceptor impurities, we call it a p{type semiconductor because it has primarily positively
charged carriers.

Semiconductor Devices
Of all the discoveries and inventions by physicists in the 20th century, the one with

the most impact on technology and the economy is probably the transistor. A transistor
is a current ampli�er or regulator. The transistor was invented in 1948 by John Bardeen,
William Shockley, and Walter Brattain at Bell Laboratories. For this they received the
Nobel prize in 1956. I seem to remember that the number of transistors made each day
is roughly equal to the number of calories consumed by all the people on the earth each
day. That means about 1800 transistors are produced each day for every man, woman
and child. In other words there are about 40 million transistors for each person on earth.
Nowadays a typical chip has about 1 million transistors. (These are order of magnitude
estimates.) The cpu of the G4 Mac computer has 56 million transistors.

pn Junction: Diode
The basic element of solid state electronics is the pn junction, which is made by doping

a semiconductor (say germanium) with donor and acceptor impurities in such a way that
it is strongly n{type in one region and strongly p{type in another. The boundary layer
is quite narrow, probably a few hundreds or thousands of angstroms, and for simplicity
we replace it by an abrupt barrier.
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p n
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Let's suppose that initially the barrier between the p and n doped semiconductors
is in�nitely high. The chemical potential � will be higher in the n{type semiconductor
than in the p{type semiconductor.
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Now imagine that we remove the barrier. Electrons will 
ow over to the p{side, and
holes to the n{side until the chemical potentials are the same.

Conduction  Band

Valence  Band

Conduction  Band
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acceptors

holes

electrons
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+  charge

charge

As soon as a small charge transfer by di�usion has taken place, there is left behind on
the p{side an excess of { ionized acceptor atoms and on the n{side an excess of + ionized
donor atoms. This double layer of charge creates an electric �eld directed from n to p
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that inhibits further di�usion and maintains the separation of the two carrier types. We
can draw the potential seen by the electrons. The potential drop will be at the interface
because the ionized donors and acceptors attract each other.

p n
+
+
+
+

p n

E

Electrons would rather go downhill than uphill. If we apply a voltage across the
junction that increases the size of the drop, we encourage electrons to 
ow from the
p{side to the n{side. This is called reverse bias. But they already want to do this, so it
doesn't make much di�erence in the current. If we really crank up the reverse bias, we
get what is called \breakdown" and electrons avalanche from the p{side to the n{side.
If we apply voltage in the other direction, the electrons are less reluctant to go from the
n{side to the p{side. (the conductivity � � exp(�V=kT ) where V is the barrier height.)
This is called forward bias. This asymmetry in the preference of the direction of the
current is how a diode works. A diode allows current to go one way but not the other
way. Increasing current 
ows as the forward bias increases but not much current 
ows
when reverse bias is applied.

I

V

forward

breakdown

reverse
bias

bias

Bipolar Transistors
Since we now understand how pn junctions work, we can understand schematically

how bipolar transistors work. An n{p{n type transistor consists of 2 pn junctions. A
small p{type region is sandwiched between two n{type regions and connections are made
to all three regions. The terminals are labelled emitter, base, and collector.
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A bipolar transistor is a current ampli�er. In normal operation the emitter to base
junction is forward biased, and the collector to base junction is reverse biased. Consider
the electrons coming into the base from the emitter due to the forward biased emitter{
base junction. For a thin enough base section, these carriers sweep through the base
layer, cross the base{collector junction, and contribute to the collector current. The
essential action is the emitting of carriers from the emitter region and the collection of
practically all of these carriers by the collector. Let's denote this current Iec. A small
hole current from the base region also 
ows across the emitter junction. We will denote
this hole current Ibe. This adds to the electron current from the emitter to the base. By
proper design of the impurity concentrations and base layer width, the ratio Iec=Ibe can

be made very large (
<
� 100). If the input current is taken to be the small hole current Ibe,

and the output current is taken to be the large emitter{collector current Iec, a signi�cant
current gain is thus achieved.
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MOSFET
As an example of a semiconducting device, let's look at a MOSFET which stands for

Metal Oxide Semiconducting Field E�ect Transistor.
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Semiconductor

Aluminum

gGate Voltage  V   > 0

SiO (insulator)2

Source Drain

MOSFET

(p-type silicon)

electrons

The positive gate voltage attracts electrons to the interface. By adjusting the magni-
tude of the gate voltage Vg, we can adjust the charge density at the interface between the
semiconductor and the insulator. This is like a capacitor where Q = CVg. The current

ows between the source and the drain. Since current is I = dQ=dt, we can adjust the
amount of current by adjusting the gate voltage.

The potential seen by the electrons is lower near the interface between the semicon-
ductor and the oxide layer than deep inside the semiconductor. We can describe this
lower potential by \band bending."

Vg
E F

Conduction  Band

holes

electrons
2DEG

SiO
2

Al
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In this �gure it is assumed that the semiconductor is p{type, i.e., some electrons of the
valence band have become bound to acceptor impurities leaving empty states or holes.
The lowest energy holes are at the top of the valence band. This means that the Fermi
energy EF is close to the top of the valence band. The electrons attracted to the interface
�rst �ll up these hole states leaving a net negative charge near the interface. However, if
the gate voltage Vg is large enough, the bottom of the conduction band will become lower
than EF . This is called the inversion layer since the bottom of the conduction band is
below the top of the valence band, inverting the order. Electrons will occupy states in
the part of the conduction band below the Fermi level. These electrons at the interface
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form a 2 dimensional electron gas (2DEG). These are the electrons which carry current
from the source to the drain.

(When one puts this 2DEG in a large magnetic �eld perpendicular to the plane of the
interface, one gets the quantum Hall e�ect. The discovery of the integer quantum Hall
e�ect by Klaus von Klitzing won him the Nobel prize in 1985. The 1998 Nobel prize was
for the fractional quantum Hall e�ect which was discovered by Daniel Tsui and Horst
Stormer and explained by Robert Laughlin. In the fractional quantum Hall e�ect the
2DEG becomes a quantum 
uid with fractionally charged excitations which have charges
like e=3. The smaller the fraction, the larger the applied �eld.)
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