
LECTURE 10

Free Energy and Entropy
Bose condensation is a second order phase transition which can be described by the

Ginzburg{Landau free energy. Before we do this, let me remind you what entropy and
free energy are.

Suppose we have an isolated system with energy E. Let 
 denote the number of
states of the system between E and E + ÆE. Then the entropy S is given by

S = kB ln
 (1)

where kB is Boltzmann's constant. Entropy is loosely thought of as the disorder or the
number of active degrees of freedom of the system. The second law of thermodynamics
tells us that an isolated system maximizes its entropy. If the system is not isolated and
absorbs a tiny amount of heat dQ, its entropy increases by

dS =
dQ

T
(2)

where T is the temperature. This gives a macroscopic thermodynamic de�nition of
entropy.

The Helmholtz free energy F is de�ned by

F = E � TS (3)

where E is the internal energy of the system. The free energy describes a system that
has a �xed number of particles N that is in contact with a heat bath at temperature T .
Such a system always wants to minimize its free energy. When T = 0, the system is in
its ground state and entropy is not important. However, as T increases, entropy becomes
more important and a system wants to maximize its entropy S in order to minimize its
free energy. In terms of the partition function Z =

P
n e

�En=kBT that we introduced in
lecture 2,

F = �kBT lnZ (4)

We saw in lectures 2 and 3 that we could get useful quantities like < E > and < ns > by
taking the appropriate derivatives of lnZ. Similarly we can get useful thermodynamic
quantities by taking derivatives of F . For example, the entropy is given by

S = �
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(5)

where the subscript V means that the derivative is taken a �xed volume. The speci�c
heat at constant volume is given by

CV = T

 
@S

@T

!
V

= �T

 
@2F

@T 2

!
V

(6)



First and Second Order Phase Transitions
Phase transitions are often associated with ordering. For example the molecules in

water are disordered whereas they are ordered in ice. This is a special case of a liquid{to{
solid phase transition. Bose condensation is another example of a phase transition; the
bosons are not coherent above TC but a macroscopic fraction of them can be described
by a coherent wavefunction  below TC . There are 2 basic types of phase transitions:
�rst order and second order. Water{to{ice (or liquid{to{crystalline solid) is an example
of a �rst order phase transition. Typically a �rst order phase transition is associated
with a discontinuity �S in the entropy. The entropy of the liquid S` is greater than the
entropy of the solid Ss and �S = S` � Ss. The latent heat L is given by

L = T�S (7)

To understand latent heat, suppose we add heat to a block of ice at a constant rate. Its
temperature increases steadily until we reach 0 C, where the temperature stays put until
the ice is all melted. All the heat we put in at 0 C goes into melting the ice; this heat is
the latent heat of transformation. First order phase transitions are also often associated
with sudden volume changes; ice expands relative to the water it came from. This is
unusual; most solids take up less space than their liquid counterparts.

We often associate an order parameter with a phase transition. In a liquid the atoms
or molecules are disordered in their arrangement, but at the transition, they suddenly
become ordered. Thus a �rst order phase transition is associated with a discontinous
jump in the order parameter.

The other type of phase transition is a second order phase transition. Bose conden-
sation is an example of a second order phase transition. A second order phase transition
does not have any latent heat associated with it; the entropy is continuous at TC . In a
second order phase transition the order parameter grows continuously from zero as the
temperature drops below TC . For Bose condensation the order parameter is  ;  = 0 for
T > TC and  grows continuously as T decreases below TC .
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Another example of a second order phase transition is the paramagnetic to ferromag-
netic phase transition. (Ferromagnets are bar magnets and can be found on refrigerator
doors holding up notes.) We have discussed how the electrons in atoms have magnetic
moments associated with them due to their spin and orbital angular momenta. When
the atoms make up a solid, they can give the solid magnetic properties. If the magnetic
moments are not pointing in any particular direction but can be aligned by an external
magnetic �eld Hext, then the system is paramagnetic with the magnetization M = 0. If
the magnetic moments are lined up and are pointing in the same direction even when
Hext = 0, then the system is ferromagnetic with a net magnetization Mz 6= 0. (I'm
calling ẑ the direction of the magnetization.) A system at high temperatures can be
in the paramagnetic state and can then undergo a second order phase transition into a
ferromagnetic state at some temperature TC . The order parameter is the magnetization
Mz. It increases continuously from zero as T drops below TC . One signature of the
second order phase transition is a susceptibility �(T ) which diverges at T = TC . Recall
that M = �H. The susceptibility tells us how easy it is for the spins to respond to a
magnetic �eld. �(T ) diverges as one approaches TC from high or low temperatures.

As long as we're on the topic of magnetism, let me just mention one other kind
of magnetic state, and that is the antiferromagnet. In an antiferromagnet the spins
alternate in space: up, down, up, down, etc. The net magnetization is zero but the
staggered magnetization, where we just look at every other spin, say, is not zero. This
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staggered magnetization is the order parameter. Like the ferromagnet, there is a second
order phase transition from a paramagnet to an antiferromagnet. If you could put on a
staggered magnetic �eld that alternated direction from site to site, you could measure a
staggered susceptibility and this would diverge at TC .

Ferromagnet Antiferromagnet Paramagnet

Broken Symmetry
Reference: P. W. Anderson, Basic Notions of Condensed Matter Physics, Addison{

Wesley (1984), chapter 2.
There is one further concept that is associated with phase transitions and that is the
concept of broken symmetry. Broken symmetry occurs when the ordered ground state
does not have the full symmetry of the Hamiltonian. Recall that the symmetries of a
Hamiltonian are associated with the operators that commute with the Hamiltonian. For
example a homogeneous isotropic liquid has translational invariance; move all the atoms
by the same amount and the liquid looks the same. The Hamiltonian describing this
system is also invariant under translation. But once the system forms a crystal where
the atoms or molecules sit on a periodic lattice, the translational invariance is broken and
the ground state no longer has the full symmetry of the Hamiltonian. The Hamiltonian
doesn't change; it still has translational symmetry, but the system it describes no longer
has translation symmetry.

We can make this a bit more formal. Recall from lecture 2 that we said that if the
Hamiltonian has translational symmetry, momentum is a good quantum number. States
can be labelled by any value of the momentum. But in the crystal which is periodic and
has discrete translational symmetry, the eigenstates are labelled by discrete values of the
momentum. We saw an example of this in lecture 1 where we solved for the eigenstates
of free particle system with periodic boundary conditions and found that only discrete
values of the momentum were allowed.

Notice that this broken symmetry has a certain rigidity. If you push on one corner of
the crystal, all the other particles move with it in such a way as to maintain their spatial
relation with the corner that you are moving. True broken symmetry is associated with
some type of rigidity. P. W. Anderson calls this generalized rigidity. (Photons in a laser
don't have rigidity.)

Another example is the paramagnetic to antiferromagnetic transition. The Hamil-
tonian describing the spins and their interactions with one another is invariant under
rotations in spin space. This means that we expect its eigenstates to have good total
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spin quantum numbers S and Sz.

H = J
X
i>j

~Si � ~Sj (8)

where the exchange constant J > 0. The paramagnet has the symmetry of the Hamilto-
nian. In other words if you rotate all the spins in a paramagnet by the same amount, the
paramagnet will look the same. But if you rotate an antiferromagnet by an arbitrary an-
gle, it looks di�erent. So the antiferromagnet is a broken symmetry state. By this same
argument, a ferromagnet is a broken symmetry state and is often cited as an example of
broken symmetry. But technically speaking, it is not a broken symmetry state because
a ferromagnet is an eigenstate of the Hamiltonian. It can be labelled by its total spin S
and by Sz. On the other hand an antiferromagnet does not have a good spin quantum
number S. The true ground state is a singlet with S = 0.

For the case of Bose condensation, the Bose condensed state is described by a wave-
function or order parameter  = j jei�. The broken symmetry is gauge symmetry by
which we mean that everywhere in the system the phase is �. This is what gives the
state macroscopic phase coherence. Note that this value of � may 
uctuate in time, but
at any given time, it is the same everywhere.

When a continuous symmetry such as translation or rotation is broken, low energy
excitations called Goldstone modes result. These low energy excitations are collective
modes that involve perturbations related to the symmetry that was broken. Collective
modes involve correlated motion among a large number of atoms or spins or whatever.
For example, when translational symmetry is broken and a crystal results, small trans-
lations of the atoms back and forth result in lattice vibrations. These vibrations are the
Goldstone modes and the Goldstone bosons are phonons. For an antiferromagnet where
rotational symmetry is broken, the Goldstone modes are spin waves and the Goldstone
bosons are magnons.

Broken symmetry is a deep and far ranging concept that applies to a wide variety
of phenomena. Not only does it apply to phase transitions such as those involving Bose
condensation, superconductivity, magnetism, and crystallization, but it also is important
in understanding the Higgs mechanism in particle physics, and the formation of matter
from energy in the early stages of the universe. Phase transitions have also been proposed
to describe the origin of the universe: some think the big bang was a phase transition
that involves symmetry breaking.

Ginzburg{Landau Free Energy
There is a very useful way to describe second order phase transitions using the

Ginzburg{Landau free energy. Let's suppose we want to describe a second order phase
transition where the order parameter is denoted by  . (We could just as easily use M if
we were describing a magnetic transition.) We can write down a free energy in terms of
 to describe the thermodynamics of the transition. Near the transition j j is small, so
we can expand the free energy functional F in powers of j j. We stop at fourth order.
We only have even powers of j j because F must be invariant under the transformation
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 !  eis where s is a constant phase factor (or under the transformation Mz ! �Mz).
Besides a cubic term j j3 would give a �rst order transition. So we can write

F = Fn +
Z "

�h2

2m�

jr j2 + aj j2 +
1

2
bj j4

#
dV (9)

where V is the volume and Fn is the free energy of the normal state or high temperature
state, e.g., the normal metallic state for a superconductor, the normal liquid helium state,
or the paramagnetic state. a and b are coeÆcients. We have included a gradient term
jr j2. This tells us that the energy of the system increases if the order parameter varies in
space. If it varies slowly so that there are only long wavelength 
uctuations, then we can
just keep the lowest order gradient terms. Let's assume the order parameter is uniform
in space and get rid of this term entirely. This is �ne for an isotropic homogeneous
superconductor with no external �eld. The energy is lower that way and it makes life
simpler. Now we just have a quartic polynomial in j j. Because j j is independent of
coordinates, we can pull it out of the volume integral:

R
j j2dV = j j2V . Then we have

F = Fn + aV j j2 +
1

2
bV j j4 (10)

The coeÆcient a is a function of temperature

a = �(T � TC) � > 0 (11)

Thus a > 0 for T > TC and a < 0 for T < TC .

n nnF − F

Τ < Τ
C

F − FF − F

Ψ

Τ > Τ
C

Ψ

Τ = Τ
C

Ψ

(The  axis should really be the complex  plane if  is the complex order parameter
for a super
uid or a superconductor. If we had a complex  plane, then below TC , F ( )
would have the shape of a Mexican hat or the bottom of a wine bottle.) For T > TC , the
equilibrium value of j j = 0. For T < TC , the equilibrium value of j j2 is given by

@F

@(j j2)
= 0 =) j j2 = �

a

b
=
�(TC � T )

b
T < TC (12)

For a superconductor j j2 represents the density of superconducting electrons; for a
super
uid or Bose condensate, it represents the condensate fraction. Notice that j j2
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goes to zero linearly as the temperature approaches TC from below. Substituting (12)
back into equation (10) yields the value of the free energy Fs in the ordered state. The
di�erence in the free energies of the normal and ordered states is

Fs � Fn = �
a2V

2b
= �V

 
�2

2b

!
(TC � T )2 (13)

Using CV = �T
�
@2F
@T 2

�
V
, we �nd that at T = TC there is a jump in the speci�c heat given

by

Cs � Cn = V
�2TC
b

(14)

Superconductivity
Superconductivity is in some ways like Bose condensation for fermions. All the elec-

trons are in a single coherent state described by a wavefunction or order parameter
 = j jei�. Let's begin with a brief description of the normal metallic state which exists
above TC .

Normal Metallic State
Recall from lecture 7 that in a metal there are electrons which do not belong to any

particular atoms or group of atoms but rather are delocalized and extended throughout
the system. These are conduction electrons and carry the electric current when an electric
�eld is applied. The atoms in a metal may also have core electrons which �ll the inner
shells and are local to each atom. We will ignore these core electrons since they don't
a�ect the properties of the metal.

We will focus on the conduction electrons. For simplicity we can describe them as free
electrons which �ll the Fermi sea. To understand this, recall that in lecture 1 we found
the eigenstates for a particle in a box with periodic boundary conditions. We found that
the momentum acquires discrete values

kx =
2�

Lx

nx

ky =
2�

Ly

ny

kz =
2�

Lz

nz

where the momentum ~p = �h~k and the numbers nx, ny, and nz are any set of integers{
positive, negative, or zero. We can imagine setting up coordinate axes kx, ky, and kz and
putting a point everywhere in k�space that there is an allowed state. Notice that as the
size of the box gets bigger, the states get closer together in k�space. Since E = �h2k2=2m,
the lower energy states are the ones which are closer to the origin in k�space. Now let's
put in our conduction electrons. We will �ll the states in order of increasing energy. Only
2 electrons (spin up and spin down) can go into each state. After we've �nished putting
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all our electrons into the states in k�space, we have what is called a Fermi sea. In our
case the Fermi sea will be a sphere in k�space. The surface of this sphere is called the
Fermi surface. The Fermi energy EF is the energy of a state at the Fermi surface, and
the Fermi wavevector kF is the radius of the Fermi sea. So in our case EF = �h2k2F=2m.
An electron buried in the depths of the Fermi sea can't really jump to a nearby state in
k�space because the nearby states are occupied. So these electrons don't contribute to
the electric current. It's the electrons near the Fermi surface that can make transitions
to unoccupied states above the Fermi surface and contribute to the electrical conduction.

Superconductivity: Phenomenology
In 1911 H. Kamerlingh Onnes discovered superconductivity, 3 years after he had

liqui�ed helium. Many metals become superconducting below a critical temperature TC .
There are many experimental signatures of superconductivity. Let me list a few:

1. In�nite DC conductivity (or zero electrical resistance). So if you measure the
voltage drop across a superconducting wire, you get zero. Alternatively, if you
generate a current in a superconducting ring, e.g., by changing the magnetic 
ux
through a ring, the current will persist inde�nitely (estimated lifetime > 105 years).

TT
C

ρ

2. Meissner e�ect. Above TC , if you put the metal in an external magnetic �eld, the
�eld penetrates the metal. Below TC , the superconductor is a perfect diamagnet
and expels the magnetic �eld. It does this by having a surface current that 
ows on
its surface and screens out the magnetic �eld. In other words, the surface current
produces a magnetic �eld that cancels out the external magnetic �eld inside the
superconductor.
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3. Flux quantization. If you put a hollow superconducting cylinder with its z axis
parallel to an external magnetic �eld, then the 
ux though the hole in the middle
is quantized:

� =
Z
~B � d ~A = n�o (15)

where the \
ux quantum" �o is given by

�o =
hc

2e
(16)

If the 
ux due to the external �eld does not satisfy the quantization condition,
then screening currents will 
ow in the walls of the cylinder such that the total

ux, i.e., that due to both the external �eld and the screening currents, satis�es the
quantization condition. To minimize the screening currents, the system chooses the
value of n closest to �ext=�o. The 
ux through the hole in the middle is sometimes
called \trapped 
ux" because it is trapped by the currents 
owing in the walls.

B

4. The thermal conductivity is lousy. A normal metal is a good thermal conductor
(that's why your pots and pans are usually made of metal), but below TC the

9



thermal conductivity drops dramatically (usually exponentially). Recall that a
super
uid does the opposite and becomes a very good thermal conductor below
TC .

5. Speci�c heat. In the normal metal above TC , the speci�c heat is linear in the
temperature:

CV (T ) = 
T T > TC (17)

At TC there is a jump in the speci�c heat. We calculated this jump in our Ginzburg{
Landau treatment. Below TC , the speci�c heat decreases exponentially with de-
creasing temperature.

CV (T ) � e��=kBT T < TC (18)

C

T

V

TC can range from as low as � 1 mK to � 160 K (high temperature superconductor
under pressure). (TC = 135 K for hiTc mercury compounds.) For most elements, TC is
a few K. For example aluminum has a TC � 1 K, lead has TC � 7 K, and niobium has
TC � 9 K.
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