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LECTURE 1: Energy Levels in Quantum Mechanics

Discuss Syllabus. This course is a bird's eyeview of some of the most interesting
and important phenomena of physics. This includes atomic physics, condensed matter
physics, high energy physics, and astrophysics. We will cover such topics as the basics
of atomic and molecular physics, how a laser works, Bose{Einstein condensation, super-
conductivity, semiconductors, magnetism, quarks and leptons, and the Big Bang. These
are not disparate phenomena. There are common concepts and themes which reappear
again and again. For example, understanding black body radiation was crucial to the
birth of quantum mechanics, but it also reappears as the remnant of the Big Bang. The
emphasis of the course will be on qualitative phenomena and intuitive concepts rather
than on analytical derivations which are covered in other courses.

Before we can really start exploring these topics, we need to have a basic understand-
ing of some of the fundamentals of quantum mechanics and statistical physics. One of
the essential ingredients of quantum mechanics is the fact that energy can be discretized
as opposed to being continuous. For example, in an atom electrons occupy certain energy
levels and their wavefunctions constitute atomic orbitals. Perhaps you have heard of s,
p, and d orbitals. We'll talk more about this later. Another example is a particle in a
box. As long as the box if �nite in size, the energy levels will be discrete. It turns out
that the energy of a particle of mass m in a box of size a can only have the values given
by:

En =
n2�2�h2

2ma2
(1)

where n = 1; 2; 3; :::. These are the only values a particle can have. Nothing in between
is allowed.

Let's take a moment to derive this. (If this all looks foreign to you, don't worry about
it. Just remember that the energy levels are quantized.) We start with Schroedinger's



equation:
H = E (2)

where E is the energy and H is the Hamiltonian operator. H is the sum of the kinetic
and potential energies. Given H one can solve for the eigenfunction or wavefunction  
and the energy eigenvalue E.

x = 0 x = a
V = 0

V = infinity

Let's consider a particle in a one dimensional box. The box goes from 0 to a and the
walls are in�nitely high. So the wavefunction goes to zero at x = 0 and at x = a. Inside
the box the potential V = 0. The kinetic energy is p2=2m where p is the momentum. p
and H are operators. One way to represent them is with derivatives. Derivatives do an
operation on a function. So

p̂ =
�h

i

d

dx
(3)

where i =
p�1. I put a hat on p̂ to indicate that it is an operator. When p doesn't

have a hat, it's the eigenvalue of the momentum, i.e., it's a scalar value representing the
momentum. We could write p̂ = p . Notice that the momentum operator measures
the slope or gradient of a wavefunction. This may seem strange if you haven't seen it
before. It will be derived in the quantum mechanics course, so I don't want to go through
the derivation here. But what this says is that if the wavefunction has no slope, it has
no momentum. If you had a perfectly 
at function that was the same everywhere, i.e.,
 (x) = const, then it wouldn't have any momentum. A wavefunction has to change
spatially in order to have momentum. The more it changes, the more momentum it has.

The Hamiltonian is

Ĥ =
p̂2

2m
= � �h2

2m

d2

dx2
(4)

Notice that the Hamiltonian has the square of a gradient. This means that if the wave-
function wiggles a lot spatially, then it represents a particle with a lot of kinetic energy.
So Schroedinger's equation (2) becomes

� �h2

2m

d2 

dx2
= E (5)

2



Here the wavefunction represents the particle  . This is an example of wave{particle
duality for which quantum mechanics is famous. The probability that the particle is at
site x is given by j (x)j2. We can rewrite (5) as

d2 

dx2
= �p

2

�h2
 (6)

where p2 = 2mE. This is a second order di�erential equation. The solution has the form

 (x) = A sin(px=�h) +B cos(px=�h) (7)

where A and B are constant coeÆcients. You can check this solution by plugging it into
(6).

x = 0 x = a
V = 0

V = infinity

The fact that the solution has sine and cosine functions represents the fact that the
particle is represented by a wave function whose nodes are at the walls of the box. We
want the wavefunction to vanish at the walls because there is no way the particle can get
through in�nitely high walls. This gives us the boundary conditions:  (x = 0) = 0 and
 (x = a) = 0. The �rst condition  (x = 0) = 0 leads to B = 0. The second condition
 (x = a) = 0 implies that

pa

�h
= n� (8)

where the integer n = 1; 2; 3; :::. Note that for n = 0,  = 0. We can solve for p

p =
n��h

a
(9)

We can use this to get the energy eigenvalues:

En =
p2

2m
=
n2�2�h2

2ma2
(10)

Each value of n corresponds to a di�erent eigenvalue of the energy En. Notice that the
energy levels are not equally spaced; they get farther apart as you go up in energy. Each
value of n also corresponds to a di�erent wavefunction

 n(x) = A sin(px=�h) = A sin
�
n�x

a

�
(11)
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Notice that the more nodes there are, the more wiggles there are, and the higher the
energy is. The coeÆcient A is determined by the normalization condition that says that
there is only one particle in the box.Z a

0

dxj (x)j2 = 1 (12)

Can you �gure out what A should be?
A harmonic oscillator is another example. This is just the quantum mechanical case

of a mass attached to a spring. In this case the potential is a parabola rather than being
a square well. A particle of mass m in this potential oscillates with frequency !. The
Hamiltonian is

Ĥ =
p̂2

2m
+

1

2
m!2x̂2 (13)

You will learn how to solve this in your quantum mechanics course. Let me just write
down the result. The energy eigenvalues are

En = (n+
1

2
)�h! (14)

where n = 0; 1; 2; 3; :::. Notice once again that the energy levels are quantized. In this
case they are evenly spaced by an amount �E = �h!.

Electromagnetic radiation is also quantized. Light can be described as waves or
as particles called photons. A photon has energy h� where � is the frequency of the
electromagnetic wave. Recall that ! = 2�� and that � = c=� where c is the speed of
light. Often one speaks in terms of the wavenumber k = 2�=�. If we make it a vector

quantity ~k, then we call it a wavevector. This is related to the momentum by ~p = �h~k
and to the frequency by ! = ck. So if the electromagnetic wave has a short wavelength,
it has a high frequency and the photon carries a lot of energy. Once again we see that
lots of wiggles means lots of energy. Photons are massless and they travel at the speed of
light. So the basic message is that energy is quantized and that there are discrete energy
levels.

Quantum Statistical Mechanics
Counting States

In the example of a particle in a box we saw that the energy levels are quantized.
Each energy level is associated with a mode or eigenfunction. It is often useful to be able
to count the number of modes in a box that have energies between E and E + dE. This
is because statistical mechanics deals with many particle systems. Life would be boring
if we only dealt with one particle.

Suppose we have a 3 dimensional box whose walls are parallel to the x, y, and z axes
with lengths Lx, Ly, and Lz. Thus the volume is V = LxLyLz. We can solve this in much
the same way as we did the particle in a box problem. Inside the box the potential is zero.
The eigenmodes are waves. Let's choose boundary conditions such that the solution of
Schroedinger's equation (2) are wavefunctions that are plane waves:

	 = A exp[i(~k � ~r � !t)] =  (~r) exp(�i!t) (15)

4



This is a propagating wave that is never re
ected. So our box can't have hard walls.
Rather let's imagine that our box is embedded in an in�nite set of similar boxes in each
of which the physical situation is exactly the same. In other words, each of these boxes
is a repeat of the original box.

To describe this situation, we use periodic boundary conditions which we can write
as

 (x + Lx; y; z) =  (x; y; z)

 (x; y + Ly; z) =  (x; y; z)

 (x; y; z + Lz) =  (x; y; z)

If we require our traveling wave solution

 (~r) = exp(i~k � ~r) = exp[i(kxx + kyy + kzz)] (16)

to satisfy these boundary conditions, then we must require that

kx(x+ Lx) = kxx + 2�nx (17)

where nx is an integer. We can rewrite this as

kx =
2�

Lx

nx (18)

Similarly,

ky =
2�

Ly

ny

kz =
2�

Lz

nz

Here the numbers nx, ny, and nz are any set of integers{ positive, negative, or zero.

5



We can use p = �hk and E = p2=2m to deduce that

E(nx; ny; nz) =
�h2

2m
(k2x + k2y + k2z) =

2�2�h2

m

 
n2x
L2
x

+
n2y
L2
y

+
n2z
L2
z

!
(19)

Once again we see that the energy levels are quantized. Notice that for any kind of
macroscopic volume where Lx, Ly, and Lz are large, the energy levels are very closely
spaced.

Now we want to count the number of modes or waves that have wavevectors between
~k = (kx; ky; kz) and ~k + d~k = (kx + dkx; ky + dky; kz + dkz). For given values of ky and
kz, it follows from (18) that the number �nx of possible integers nx for which kx lies in
the range between kx and kx + dkx is equal to

�nx =
Lx

2�
dkx (20)

We see that if Lx is very large, a lot of states can be in the small interval dkx. The same
holds true for dky and dkz. So the number of states that lie between ~k and ~k + d~k is

�d3k = �nx�ny�nz =
�
Lx

2�
dkx

��
Ly

2�
dky

��
Lz

2�
dkz

�
=
LxLyLz

(2�)3
dkxdkydkz (21)

or

�d3k =
V

(2�)3
d3k (22)

where d3k � dkxdkydkz is an element of volume in \k space." Notice that the number of

states � is independent of ~k and proportional to the volume V under consideration. So
the \density of states", i.e., the number of states per unit volume, lying between ~k and
~k + d~k is d3k=(2�)3 which is a constant independent of the magnitude or shape of the
volume V .

Using the relation ~p = �h~k, we can also deduce that the number of states �pd
3p in the

momentum range between ~p and ~p + d~p is

�pd
3p = �d3k =

V

(2�)3
d3p

�h3
= V

d3p

h3
(23)

where h = 2��h is the ordinary Planck's constant.
If k{space is isotropic, i.e., the same in every direction, then the number of states in

a spherical shell lying between radii k and k + dk is

�kdk = �d3k =
V

(2�)3
(4�k2dk) =

V

2�2
k2dk (24)

If we are considering photons for which ! = ck, then we can plug k = !=c into (24) to
get the number of states lying between ! and ! + d!.

�!d! = 2
V

2�2c3
!2d! (25)
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The factor of 2 comes from the fact that there are 2 photon polarizations. The polariza-
tion refers to the direction of the electric �eld vector ~E in the electromagnetic radiation.
Since ~E must be perpendicular to ~k, there are 2 polarization directions. We will use (25)
in deriving blackbody radiation in lecture 4. Sometimes the term \density of states" for
photons is used to refer to the number of states per unit volume per unit energy:

N(!) =
2

2�2c3
!2 =

1

�2c3
!2 (26)

7


