Fall 1998 due 11:00 am Tuesday Oct. 20

PROBLEM SET 3

Oct. 16 Colloquium: "Nonlinear Dynamics, Parity, and Geometry: The Emergence of Structure in Inhomogeneous Turbulence"

Dr. Leaf Turner, Los Alamos National Laboratory

3 pm, 101 Rowland Hall (formerly PS I)

- 1. Eisberg and Resnick: 7.4
- 2. Identify the atoms that have the following ground state electronic configurations in their outer shell or shells: (a) $3s^2 3p^6 3d^8 4s^2$, (b) $4s^2 4p^4$ (c) $4s^2 4p^6 4d^2 5s^2$ (d) $4s^2 4p^6 4d^1 5s^2$, (e) $4s^2 4p^6 4d^{10} 4f^3$.
- 3. Show that the multiplicity of a level, defined as the number of different J-values that can be formed from given L and S values, is 2L + 1 or 2S + 1, whichever is smaller.
- 4. What are the values of L, S, and J and the multiplicities of the levels having the following term designations: ${}^{1}S_{0}$, ${}^{3}D_{2}$, ${}^{4}P_{5/2}$, ${}^{2}F_{7/2}$, ${}^{6}I_{13/2}$?
- 5. What types of terms can result from the following values of L and S? (Answer in spectroscopic notation.) (a) L = 1, S = 1/2 (b) L = 3, S = 1, (c) L = 2, S = 7/2, (d) L = 5, S = 3/2. (Partial answer: (a) ²P_{1/2}, ²P_{3/2}).
- 6. What spectral terms result from an electron configuration $3d \ 4f$, assuming LS coupling?
- 7. In the transition ${}^{4}F_{3/2} {}^{10}D_{1/2}$, how many lines will appear in the Zeeman pattern? Explain your reasoning by listing the allowed transitions.