Fall 2001

Discoveries and Inventions of Modern Physics

due 11:00 am Tuesday Oct. 23

PROBLEM SET 4

Oct. 18 Colloquium: "On the Origin of Ultra High Energy Cosmic Rays"
Professor Roger Blandford, California Institute of Technology
3:30 p.m., 101 Rowland Hall.

- 1. In the transition ${}^{4}F_{3/2} {}^{4}D_{5/2}$, how many lines will appear in the Zeeman pattern? Explain your reasoning by listing the allowed transitions.
- 2. Using the attached energy level diagrams for the formation of molecular orbitals, describe the bonding of H_2 , He_2 , Be_2 , and B_2 by stating or diagraming which orbitals are occupied by electrons. In other words, draw spin up and spin down electrons in the energy levels for the molecular orbitals.
- 3. Eisberg and Resnick problem 15.20.
- 4. (a) Calculate the angular frequency of the Larmor precession of a classical symmetric top whose angular momentum is \vec{I} and whose magnetic moment is $\vec{\mu} = g_N (e\hbar/2Mc)\vec{I}$ in a magnetic field whose induction is \vec{B} .
 - (b) Calculate the energy levels of a nucleus whose spin quantum number is \vec{I} and whose magnetic moment is $\mu = g_N (e\hbar/2Mc)\vec{I}$ in a magnetic field \vec{B} . Using the selection rule $\Delta M_I = \pm 1$, evaluate the angular frequency of a photon which will induce the system to jump from one orientation to another.
- 5. Eisberg and Resnick problem 11.19.
- 6. Eisberg and Resnick problem 11.20.