Fall 2001

Discoveries and Inventions of Modern Physics

due 11:00 am Tuesday Oct. 2

PROBLEM SET 1

- Eisberg and Resnick: Problem 6.19 (Note the difference between "Questions" and "Problems" in Eisberg and Resnick.)
- 2. Eisberg and Resnick: Problem 6.20
- 3. In class we counted the states in a 3D box. Do the same for a 2D box with periodic boundary conditions. In particular find
 - (a) the energy eigenstates $E(n_x, n_y)$
 - (b) the density of states $N(\omega)$ for photons that have only one polarization
- 4. Consider a nonrelativistic free particle in a cubic container of edge length L and volume $V = L^3$. Assume that the particle is confined in the container so that the potential is zero inside the container and infinite outside.
 - (a) Each quantum state s of this particle has a corresponding kinetic energy ε_s which depends on V. What is $\varepsilon_s(V)$?
 - (b) Find the contribution to the gas pressure $p_s = -(\partial \varepsilon_s / \partial V)$ of a particle in this state in terms of ε_s and V.
 - (c) Use this result to show that the mean pressure $\langle p \rangle$ of any ideal gas of particles is always related to its mean total kinetic energy $\langle E \rangle$ by $\langle p \rangle = \frac{2}{3} \langle E \rangle /V$.
- 5. Consider the case of the orbital angular momentum quantum number $\ell = 2$ and the spin angular momentum number s = 1/2.
 - (a) What are the possible values of the total angular momentum number j? $(\vec{J} = \vec{L} + \vec{s})$
 - (b) For each value of j, what are the possible values of j_z ?