PROBLEM SET 4

Oct. 24 Colloquium: “What the visual cortex computes”

Dr. Charles Stevens, The Salk Institute

3:30 p.m., 101 Rowland Hall.

1. In the transition $^4F_{3/2} \rightarrow ^4D_{5/2}$, how many lines will appear in the Zeeman pattern? Explain your reasoning by listing the allowed transitions.

2. Using the attached energy level diagrams for the formation of molecular orbitals, describe the bonding of H_2, He_2, Be_2, and B_2 by stating or diagraming which orbitals are occupied by electrons. In other words, draw spin up and spin down electrons in the energy levels for the molecular orbitals.

4. (a) Calculate the angular frequency of the Larmor precession of a classical symmetric top whose angular momentum is \vec{I} and whose magnetic moment is $\vec{\mu} = g_N (\hbar/2Mc) \vec{I}$ in a magnetic field whose induction is \vec{B}.

(b) Calculate the energy levels of a nucleus whose spin quantum number is \vec{I} and whose magnetic moment is $\mu = g_N (\hbar/2Mc) \vec{I}$ in a magnetic field \vec{B}. Using the selection rule $\Delta M_I = \pm 1$, evaluate the angular frequency of a photon which will induce the system to jump from one orientation to another.
