Physics 224

Discoveries and Inventions of Modern Physics

Fall 2002

due 11:00 am Tuesday Oct. 15

PROBLEM SET 2

Oct. 10 Colloquium: "Dynamic Contrast Magnetic Resonance Imaging in Cancer and Neuro Studies"

Professor Lydia Su, UCI

3:30 pm, 101 Rowland Hall

- 1. Consider a nonrelativistic free particle in a cubic container of edge length L and volume $V = L^3$. Assume that the particle is confined in the container so that the potential is zero inside the container and infinite outside.
 - (a) Each quantum state s of this particle has a corresponding kinetic energy ε_s which depends on V. What is $\varepsilon_s(V)$?
 - (b) Find the contribution to the gas pressure $p_s = -(\partial \varepsilon_s / \partial V)$ of a particle in this state in terms of ε_s and V.
 - (c) Use this result to show that the mean pressure $\langle p \rangle$ of any ideal gas of particles is always related to its mean total kinetic energy $\langle E \rangle$ by $\langle p \rangle = \frac{2}{3} \langle E \rangle /V$.
- 2. Eisberg and Resnick: 1.16
- 3. Eisberg and Resnick: 11.3 (Note that in terms of the notation used in class $\varepsilon_F = \mu$.)
- 4. Eisberg and Resnick: 11.5 (Note that in terms of the notation used in class $\alpha = -\beta \mu$.)
- 5. Plot the blackbody distribution spectrum $\rho_T(\eta)$ versus $\eta = \hbar \omega / kT$ at T=3 K.
- 6. Eisberg and Resnick: 1.19 (Hint: Use the result of the previous problem and the result stated in problem 1.18.)
- 7. Eisberg and Resnick: 1.12