
LECTURE 9

Statistical Mechanics

Basic Methods
We have talked about ensembles being large collections of copies or clones of a system

with some features being identical among all the copies. There are three different types
of ensembles in statistical mechanics.

1. If the system under consideration is isolated, i.e., not interacting with any other
system, then the ensemble is called the microcanonical ensemble. In this case the
energy of the system is a constant.

2. If the system under consideration is in thermal equilibrium with a heat reservoir at
temperature T , then the ensemble is called a canonical ensemble. In this case the
energy of the system is not a constant; the temperature is constant.

3. If the system under consideration is in contact with both a heat reservoir and a
particle reservoir, then the ensemble is called a grand canonical ensemble. In this
case the energy and particle number of the system are not constant; the temperature
and the chemical potential are constant. The chemical potential is the energy
required to add a particle to the system.

The most common ensemble encountered in doing statistical mechanics is the canonical
ensemble. We will explore many examples of the canonical ensemble. The grand canon-
ical ensemble is used in dealing with quantum systems. The microcanonical ensemble
is not used much because of the difficulty in identifying and evaluating the accessible
microstates, but we will explore one simple system (the ideal gas) as an example of the
microcanonical ensemble.

Microcanonical Ensemble
Consider an isolated system described by an energy in the range between E and

E + δE, and similar appropriate ranges for external parameters xα. To illustrate a
microcanonical ensemble, consider only the energy parameter. Let Er be the total energy
of the rth microstate. Also let Pr be the probability of the system being in the rth
microstate. The average energy is

E =
∑

r

Pr Er (1)

where the sum is over the accessible microstates. From the postulates of statistical
mechanics that all microstates are equally probable, the probability of the system being
in any microstate is a constant as long as the total energy is in the range E to E + δE.
Assume there are ν such states, then

Pr =
1

ν
(2)



The average value of any property of the system is

y =
∑

r

Pr yr =
∑

r

yr

ν
(3)

where yr is the value of the property y when the system is in the rth microstate. The
difficulty is that identifying the correct set of microstates is exceedingly difficult. If
we think of phase space as consisting of all possible microstates of the system with all
possible energies, then the microcanonical ensemble consists of the subset of phase space
with microstates that have energy between E and E + δE. Picking out these states is
difficult. For example consider an ideal gas. Let each gas particle be a “system”. Each
system or particle is isolated and doesn’t interact with anything. The microcanonical
ensemble would consist of those particles with kinetic energy between E and E + δE,
i.e., it would consist of only those particles with a certain velocity. We could only sum
over those particles, not all the particles. Picking out these particles is a pain.

Canonical Ensemble
The most common situation encountered in statistical mechanics is that of a system

in thermal contact with a heat reservoir at constant temperature T . In equilibrium the
system is also at temperature T . The system under consideration may be a small part of
a larger system, for example, a 1 gram block of copper immersed in a container of liquid
helium at 4.2 K.
Assume that system A is in thermal contact with a heat reservoir A′. Thermal contact

means that only heat can be exchanged between A and A′. The energy of system A cannot
be specified since it will fluctuate as heat is exchanged randomly between A and A′ (but
E will be well defined). Let Er be the energy of a microstate of A. Then

Er + E ′ = Eo (4)

where E ′ is the energy of the heat reservoir A′ and Eo is the total energy of the combined
system A and A′. The probability Pr of A being in microstate r is proportional to the
number Ω′(Eo − Er) of microstates of the reservoir:

Pr = C ′Ω′(Eo
− Er) (5)

where C ′ is a constant determined by the normalization condition:
∑

r

Pr = 1 (6)

Now assume Er ¿ Eo (i.e., assume that A′ is a heat reservoir) and expand about E ′ = Eo:

lnΩ′(Eo
− Er) = lnΩ

′(Eo)−
∂ lnΩ′(E ′)

∂E ′

∣

∣

∣

∣

∣

Eo

Er + ... (7)

But

β =
∂ lnΩ′(E ′)

∂E ′

∣

∣

∣

∣

∣

Eo

=
1

kBT
(8)
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where T is the temperature of the reservoir. Thus

lnΩ′(Eo
− Er) = lnΩ

′(Eo)− βEr (9)

or
Ω′(Eo

− Er) = Ω
′(Eo)e−βEr (10)

Thus
Pr = C ′Ω′(Eo

− Er) = C ′Ω′(Eo)e−βEr = Ce−βEr (11)

where

C =
1

∑

r e
−βEr

(12)

Finally

Pr =
e−βEr

∑

r e
−βEr

(13)

This probability distribution is sometimes called the Boltzmann distribution. It tells
us the probability that a microstate with energy Er will be occupied. Notice that if
Er < kBT , then there is a good chance that the state will be occupied. But if Er is
large compared to the temperature, then the chance that the rth state is occupied is
exponentially small.
The average value of any parameter y is given by

y =
∑

r

Pryr =

∑

r yre
−βEr

∑

r e
−βEr

(14)

where yr is the value of the parameter y in the rth state. For example, the mean energy
is

E =

∑

r Ere
−βEr

∑

r e
−βEr

(15)

The denominator arises quite frequently. So let

Z ≡
∑

r

e−βEr (16)

Z is called the partition function. It acts like a generating function. For example,

∑

r

Ere
−βEr = −

∑

r

∂

∂β
e−βEr = −

∂

∂β

∑

r

e−βEr = −
∂Z

∂β
(17)

or

E = −
1

Z

∂Z

∂β
= −

∂ lnZ

∂β
(18)

The partition function Z is quite useful and we can use it to generate all sorts of infor-
mation about the statistical mechanics of the system.
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The advantage of the canonical ensemble should now be apparent. The sum is over
all the microstates of the system. We don’t have the difficulty of finding only those
microstates whose energy lies within some specified range.
Let us also calculate the dispersion (∆E)2 of the energy:

(∆E)2 = (E − E)2 = E2 − 2EE + E
2
= E2 − E

2
(19)

We have already computed E. We need now to compute E2:

E2 =

∑

r E
2
re
−βEr

∑

r e
−βEr

(20)

But
∑

r

E2
re
−βEr = −

∂

∂β

(

∑

r

Ere
−βEr

)

=

(

−
∂

∂β

)2 (
∑

r

e−βEr

)

(21)

And from the definition of the partition function Z

E2 =
1

Z

∂2Z

∂β2
(22)

This can be rewritten as

E2 =
∂

∂β

(

1

Z

∂Z

∂β

)

+
1

Z2

(

∂Z

∂β

)2

= −
∂E

∂β
+ E

2
(23)

Finally we obtain

(∆E)2 = E2 − E
2
= −

∂E

∂β
(24)

or

(∆E)2 =
∂2 lnZ

∂β2
(25)

We can also use Z to generate the mean generalized force X. Suppose now that we
change some macroscopic parameter x. Then the energy changes by the amount

dEr =
∂Er

∂x
dx (26)

and the macroscopic work done by the system is

dW = Xdx = −
∂Er

∂x
dx =

1

Z

∑

r

(

−
∂Er

∂x

)

e−βErdx (27)

Now note that in the numerator

∑

r

∂Er

∂x
e−βEr = −

1

β

∂

∂x

(

∑

r

e−βEr

)

= −
1

β

∂Z

∂x
(28)
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Substituting in (27), we obtain

dW =
1

βZ

∂Z

∂x
dx =

1

β

∂ lnZ

∂x
dx (29)

Recall that
dW = Xdx (30)

where X is the generalized force associated with the parameter x:

X ≡ −
∂Er

∂x
(31)

Thus, comparing (29) and (30) leads to

X =
1

β

∂ lnZ

∂x
(32)

If x is the volume, then X is the pressure p:

p =
1

β

∂ lnZ

∂V
(33)

Now let’s derive a relation between S and Z. Note that Z is a function of both β and
x. Thus

d lnZ =
∂ lnZ

∂x
dx+

∂ lnZ

∂β
dβ

= βXdx− Edβ

= βdW − d(Eβ) + βdE (34)

or
d(lnZ + βE) = β(dW + dE) = βdQ (35)

But since

dS =
dQ

T
(36)

we obtain
S = kB(lnZ + βE) (37)

or
TS = kBT lnZ + E (38)

or
E − TS = −kBT lnZ (39)

Recall that in thermodynamics F = E−TS where F is the Helmholtz free energy. Hence

F = −kBT lnZ (40)
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or
Z = e−βF (41)

This equation forms the bridge between the canonical ensemble of statistical mechanics
and thermodynamics. We can use it to relate the microscopics of the system to the
macroscopic parameters that we deal with in thermodynamics.
Notice that since

F = −kBT lnZ = −
1

β
lnZ (42)

we can write the mean pressure as

p =
1

β

∂ lnZ

∂V
= −

∂F

∂V

∣

∣

∣

∣

∣

T

(43)

We obtained this previously using

dF = −SdT − pdV (44)

We will relate one final quantity to the partition function: the specific heat at constant
volume. Recall that

Cy =

(

dQ

dT

)

y

= T
∂S

∂T

∣

∣

∣

∣

∣

y

(45)

Let y = V , then at constant volume

dE = dQ− dW = dQ (46)

since dW = pdV = 0. Thus

CV =
∂E

∂T

∣

∣

∣

∣

∣

V

=

(

∂E

∂β

∂β

∂T

)

V

= −
1

kBT 2

∂E

∂β

∣

∣

∣

∣

∣

V

= − kBβ
2∂E

∂β

∣

∣

∣

∣

∣

V

(47)

But

E = −
∂ lnZ

∂β
(48)

Therefore

CV = kBβ
2∂

2 lnZ

∂β2
= kBβ

2(∆E)2 (49)

Notice that the specific heat is related to the fluctuations in the internal energy or,
equivalently, to the width of the distribution of E. In a numerical simulation, one way to
calculate the specific heat is to calculate (∆E)2. We now see that the partition function
contains the information about the system. Most quantities of interest are obtained from
the appropriate derivatives of Z. The real task in statistical mechanics is to calculate
the partition function. Once that is done, all that remains is differentiation.
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We can also relate the specific heat to the Helmholtz free energy:

F = E − TS (50)

Recall that
dF = −SdT − pdV (51)

implies that

S = −

(

∂F

∂T

)

V

(52)

We got this when we derived F = F (T, V ) using a Legendre transformation. We can
obtain the specific heat CV using

CV = T
∂S

∂T

∣

∣

∣

∣

∣

V

= −T
∂2F

∂T 2

∣

∣

∣

∣

∣

V

(53)

This is equivalent to eq. (49).
Grand Canonical Ensemble

Suppose that the system under consideration is in contact with both a particle and
energy reservoir. In this case both energy and particle number can be exchanged with
the reservoir. In this situation neither the total energy nor the particle number of the
system is constant. Two examples of such systems are a liter of air within a larger volume
of air, and a 1 cm3 sample of copper within a larger block of copper. For mathematical
reasons quantum mechanical systems are most easily treated when in contact with both
a heat and particle number reservoir.
Assume that system A can exchange both energy and particles with system A′. As-

sume

E + E ′ = Eo

N +N ′ = N o (54)

Let Ω′(E ′, N ′) be the number of microstates accessible to the reservoir A′ when it has
energy E ′ and contains N ′ particles. The probability Pr of finding A in the microstate r

is
Pr = C ′Ω′(Eo

− Er, N
o
−Nr) (55)

where C ′ is a constant. Since both Er ¿ Eo and Nr ¿ N o,

lnΩ′(Eo
− Er, N

o
−Nr) = lnΩ

′(Eo, N o)−
∂ lnΩ′

∂E ′

∣

∣

∣

∣

∣

Eo

Er −
∂ lnΩ′

∂N ′

∣

∣

∣

∣

∣

No

Nr + ... (56)

Let

β ≡
∂ lnΩ′

∂E ′
(57)
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and

−βµ ≡
∂ lnΩ′

∂N ′
(58)

where µ is called the chemical potential. Note that both T and µ are properties of the
reservoir and not the system A. If we use the chain rule, then

−βµ ≡
∂ lnΩ′

∂N ′
=

∂ lnΩ′

∂E ′
∂E ′

∂N ′
= β

∂E ′

∂N ′
(59)

This implies that

µ = −
∂E ′

∂N ′
(60)

This is consistent with the statement that the chemical potential is the energy required
to add a particle or the difference in energy between having N ′ and N ′+1 particles. One
way to think about chemical potential is in terms of energy levels of 2 pieces of metal.
If the two pieces have different numbers of electrons, when they are put into contact,
electrons will flow from one to the other because electrons in a higher energy level in
one metal can lower their energy by going to a lower level in the other metal. This flow
continues until the electrons are filled up to the same level. This “level” is the chemical
potential.

Before

electron
flow

µ

After

Ε

Back to (56):

Ω′(Eo
− Er, N

o
−Nr) = Ω

′(Eo, N o)e−β(Er−µNr) (61)

and
Pr = Ce−β(Er−µNr) (62)

where
C−1 =

∑

r

e−β(Er−µNr) (63)

It then follows that

E =

∑

r Ere
−β(Er−µNr)

∑

r e
−β(Er−µNr)

(64)
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and

N =

∑

r Nre
−β(Er−µNr)

∑

r e
−β(Er−µNr)

(65)

Let
Z =

∑

r

e−β(Er−µNr) (66)

Then

N =
1

β

∂ lnZ

∂µ
(67)

Also
∂Z

∂β
=
∑

r

(−Er + µNr)e
−β(Er−µNr) (68)

or
1

Z

∂Z

∂β
= −E + µN = −E + µN (69)

or

E = µN −
∂

∂β
lnZ (70)

The function Z is called the grand partition function. It is this function which is of
primary importance in the grand canonical ensemble. We will return to a consideration
of the grand canonical partition function when we begin our study of quantum statistical
mechanics.
Before we begin a discussion of the applications of these basic concepts, two useful

remarks need to be made. The first is the definition of the partition function within
classical mechanics. In clasical mechanics, the sum over microstates is replaced by an
integral over phase space. That is

Z =
∫

dq1...dqfdp1...dpf

h
f
o

e−βE(q1...qfp1...pf ) (71)

A second remark concerns the partition function of two independent systems. Let A
and B be two independent systems both in contact with the same reservoir A′. Let us
label the microstates of system A by r and the microstates of system B by s. We will
assume that the total energy Ers of system A in microstate r and system B in microstate
s is

Ers = EA
r + EB

s (72)

The partition function of the combined system A plus B is

Z =
∑

r,s

e−βErs

=
∑

r,s

e−β(Er+Es)

=
∑

r

e−βEr
∑

s

e−βEs

= ZAZB (73)
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Thus the partition function of two independent systems is just the product of the two
independent partition functions. The only assumption has been that the energy of the
total system can be expressed as the sum of the energies of the two individual independent
systems. Notice that this means we can add free energies:

F = −kBT lnZ = −kBT ln(ZAZB) = −kBT lnZA − kBT lnZB = FA + FB (74)

The generalization to more than two systems is obvious. Assume we have N identical
but independent systems. If ξ is the partition function of one system, then the total
partition function of N systems is

Z = ξN (75)

We will find that quantum mechanics will lead to a correction to this equation under
certain conditions.
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