
LECTURE 10

Simple Applications of Statistical Mechanics

We have seen that if we can calculate the partition function

Z =
∑

r

e−βEr (1)

then we can derive just about anything we want to know from the partition function
such as the mean internal energy, the entropy, the pressure, the Helmholtz free energy,
the specific heat, etc. Let’s give some examples of how this works.

Paramagnetism
You may remember from E&M that the magnetic behavior of materials usually arises

from the angular momentum of the electrons. The electrons have 2 forms of angular
momentum: spin and orbital. Classically their orbital angular momentum is associated
with their orbital motion around the nucleus. Quantum mechanically the orbital angular
momentum is associated with their spatial wavefunction. Even if an electron has zero
orbital angular momentum, it still has acts like a tiny magnet and has a magnetic moment
≈ ~µB. Associated with this magnetic moment is the spin angular momentum h̄~S of the
electron. Protons and neutrons also have angular momentum h̄ ~J and magnetic moments
~µ. This gives rise to nuclear magnetic moments which are involved in NMR and MRI.
The magnetic moment of an atom, ion or single elementary particle such as an electron
or proton in free space is proportional to its angular momentum:

~µ = gµB ~J = −γh̄ ~J (2)

where the proportionality factor g is the “spectroscopic splitting” factor or just the g
factor, µB the Bohr magneton, γ the gyromagnetic ratio, and h̄ ~J the total angular
momentum. Rather than considering the case of arbitrary ~J (see Reif 7.8, pages 257-
262), let us begin by considering the simple case of spin-1/2 where J = 1/2 and g = 2.
Then the allowed quantum energy states are

E = −~µ · ~H
= −gµB ~J · ~H
= −gµBJzH (since ~H‖ẑ)

= −2µB(±
1

2
)H

= ±µBH (3)

where H is the external magnetic field. Let us also assume that we have N such inde-
pendent ions or atoms all in contact with a heat reservoir at temperature T . A physical
system that approximates this model is a metal with magnetic impurities like Mn2+.

If we consider only one atom or ion, the partition function ζ of that one atom or ion
becomes

ζ =
∑

all states r

e−βEr = eβµBH + e−βµBH (4)



and
Z = ζN =

(

eβµBH + e−βµBH
)N

(5)

The mean energy can be calculated from

E = −∂ lnZ
∂β

= −N ∂ ln ζ

∂β
= −N

ζ
µBH

(

eβµBH − e−βµBH
)

(6)

E = −NµBH
eβµBH − e−βµBH

eβµBH + e−βµBH
(7)

E = −NµBH tanh
(

µBH

kBT

)

(8)

The total magnetic moment or magnetization can be calculated from

M = Nµ

= N (P↑µ↑ + P↓µ↓)

= NµB
eβµBH − e−βµBH

eβµBH + e−βµBH
(9)

where we used µ↑ = −µ↓ = µB, P↑ = exp(βµBH)/ζ, and P↓ = exp(−βµBH)/ζ. Thus

M = NµB tanh
(

µBH

kBT

)

(10)

Alternatively we can calculate the generalized force associated with the magnetic field.
Recall that

dW = Xdx (11)

and

X =
1

β

∂ lnZ

∂x
(12)

From Reif 11.1 we find that magnetic work done by the sample is

dW = ~M · d ~H (13)

where ~M is the magnetization. Suppose ~H is pointing along the ẑ axis. We can identify
H with the external parameter x, and M , the z–component of ~M , with the generalized
force. Then the generalized force is

M =
1

β

∂ lnZ

∂H

=
N

β

∂ ln ζ

∂H

= NµB
eβµBH − e−βµBH

eβµBH + e−βµBH

= NµB tanh
(

µBH

kBT

)

= −E
H

(14)
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We see that
E = −MH (15)

We can examine M in the limit of high and low temperature.

If T → 0
(

or
µBH

kBT
→∞

)

tanh
(

µBH

kBT

)

→ 1 and M → NµB (16)

Physically at low temperatures all the magnetic moments are aligned with the magnetic
field.

x

1

tanh (x)

N

B

M

kT
µ

µB

At high temperatures, µBH/kBT → 0 and T →∞. Since tanh(x)→ x as x→ 0, we
obtain

M ∼= NµB

(

µBH

kBT

)

=
Nµ2

BH

kB

1

T
(17)

We expect the magnetization to be proportional to the magnetic field H. This is what
characterizes a paramagnet. How easy or hard it is to magnetize the system is reflected
in the magnetic susceptibility χ:

M = χH (18)

From eq. (17) we can read off the susceptibility:

χ =
M

H
=
Nµ2

B

kB

1

T
T →∞ (high temperature limit) (19)

The fact that χ varies as 1/T is known as the Curie law. χ is called the Curie susceptibility
and it goes as 1/T .
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T

χ

We can also calculate the Helmholtz free energy using eqns. (5) and (4):

F = −kBT lnZ = −kBT ln(ζN) = −NkBT ln ζ (20)

where

ζ = eβµBH + e−βµBH = 2 cosh(βµBH) = 2 cosh
(

µBH

kBT

)

(21)

So

F = −NkBT ln
(

2 cosh
(

µBH

kBT

))

(22)

We can also calculate the heat capacity. Recall from lecture 9 that

CV = − T
∂2F

∂T 2

∣

∣

∣

∣

∣

V

(23)

Taking two derivatives of (22) yields

CV = NkB

(

µBH

kBT

)2

sech2
(

µBH

kBT

)

(24)

The specific heat per spin is

cV =
CV

N
= kB

(

µBH

kBT

)2

sech2
(

µBH

kBT

)

(25)

This is called the Schottky specific heat. It is the specific heat characteristic of two state
systems. A two state system has only 2 states available to it. For example a spin–1/2
object has spin–up and spin–down states. Another example is an object that can only
access the lowest states in a double well potential. In considering such discrete states,
we are thinking quantum mechanically.
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Classical Harmonic Oscillator
Consider a classical harmonic oscillator with a spring constant κ. The typical example

is a mass on a spring. The energy is given by

E =
p2

2m
+

1

2
κx2 (26)

Assume the harmonic oscillator is in contact with a thermal reservoir at temperature T .
The partition function is

Z =
1

ho

∫

e−βEdxdp

=
1

ho

∫ ∞

−∞
dp exp

(

−βp
2

2m

)

∫ ∞

−∞
dx exp

(

−βκx
2

2

)

(27)

Recall from Reif Appendix A4 that

∫ ∞

−∞
e−αx

2

dx =
(

π

α

)1/2

(28)

Using this (27) becomes

Z =
1

ho

(

2π

βκ

)1/2 (
2πm

β

)1/2

=
1

β

2π

ho

(

m

κ

)1/2

(29)

Or

lnZ = − ln β + ln

(

2π

ho

(

m

κ

)1/2
)

(30)
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and

E = −∂ lnZ
∂β

=
∂ ln β

∂β
=

1

β
= kBT (31)

This makes sense; we expect the mean energy to be of order kBT . It turns out that
E = kBT has equal contributions from the kinetic energy and from the potential energy.
Each contributes kBT/2. One can show this explicitly. The mean kinetic energy is

KE =

∫∞
−∞

p2

2m
e−βp

2/2mdp
∫∞
−∞ dpe−βp2/2m

(32)

Use Reif Appendix A4 to evaluate the numerator and denominator:

∫ ∞

−∞
e−αx

2

dx =
(

π

α

)1/2

(33)

and
∫ ∞

−∞
e−αx

2

x2 dx =

√
π

2
α−3/2 (34)

So

KE =

1
2m

√
π

2

(

2m
β

)3/2

√
π
(

2m
β

)1/2

=
kBT

2
(35)

Similarly the mean potential energy is given by

PE =

∫∞
−∞ dx1

2
κx2e−βκx

2/2

∫∞
−∞ dxe−βκx2/2

=

κ
2

√
π

2

(

2
βκ

)3/2

√
π
(

2
βκ

)1/2

=
kBT

2
(36)

The fact that the mean kinetic and potential energies of a harmonic oscillator equals
kBT/2 is an example of the classical equipartition theorem.

Classical Equipartition Theorem
Let the energy of a system with f degrees of freedom be E = E(q1...qf , p1...pf ) and

assume

1. the total energy splits additively into the form

E = εi(pi) + E ′(q1, ..., pf ) (37)

where εi involves only pi and E
′ is independent of pi.
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2.
εi(pi) = bp2

i (38)

where b is a constant.

If we replaced pi by qi, the theorem is still true. We just want εi to be a quadratic
function of one component of q or p.

Assume that the system is in equilibrium at temperature T . Then

εi =

∫∞
−∞ εie

−βEdq1...dpf
∫∞
−∞ e−βEdq1...dpf

=

∫∞
−∞ εie

−β(εi+E
′)dq1...dpf

∫∞
−∞ e−β(εi+E′)dq1...dpf

=

∫∞
−∞ εie

−βεidpi
∫∞
−∞ e−βE

′

dq1...dpf
∫∞
−∞ e−βεidpi

∫∞
−∞ e−βE′dq1...dpf

(39)

where the last integrals in the numerator and denominator do not involve dpi. These
integrals cancel leaving

εi =

∫∞
−∞ εie

−βεidpi
∫∞
−∞ e−βεidpi

=
− ∂

∂β

∫∞
−∞ e−βεidpi

∫∞
−∞ e−βεidpi

= − ∂

∂β
ln
(
∫ ∞

−∞
e−βεidpi

)

(40)

Now use the second assumption:
∫ ∞

−∞
e−βεidpi =

∫ ∞

−∞
e−βbp

2

i dpi = β−1/2
∫ ∞

−∞
e−by

2

dy (41)

where y ≡ β1/2pi. Thus

ln
(
∫ ∞

−∞
e−βεidpi

)

= −1

2
ln β + ln

∫ ∞

−∞
e−by

2

dy (42)

Notice that the integral does not involve β. So when we take the derivative in (40), only
the first term is involved.

εi = −
∂

∂β

(

−1

2
ln β

)

=
1

2β
(43)

or

εi =
1

2
kBT (44)

This is the classical equipartition theorem. It says that each additive quadratic term in
the energy (i.e., each degree of freedom) contributes kBT/2 to the mean energy of the
system.
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Note that this theorem is true only in classical statistical mechanics as opposed to
quantum mechanics. In quantum mechanics the energy of a system is discretized into
energy levels. At low energies the levels are rather far apart. As the energy increases,
the energy levels become more closely spaced. The equipartition theorem holds when the
mean energy is such that the levels near it have an energy level spacing ∆E ¿ kBT .

Mean kinetic energy of a gas molecule
Let’s consider the simple example of a molecule in a gas (not necessarily an ideal gas)

at temperature T . Its kinetic energy is given by

K =
1

2m

(

p2
x + p2

y + p2
z

)

(45)

The kinetic energy of the other molecules do not involve the momentum ~p of this par-
ticular molecule. The potential energy of interaction between the gas molecules also is
independent of ~p. So the equipartition theorem tells us that

K =
3

2
kBT (46)

Notice that if we write

K =
1

2
mv2 =

3

2
kBT (47)

then the root–mean–square velocity vrms is given by

vrms =
√

v2 =

√

3kBT

m
(48)

For an ideal monatomic gas the energy is solely kinetic energy, so

E = N
(

3

2
kBT

)

=
3

2
νRT (49)

where N is the number of gas particles, R = NakB is the gas constant, and ν is the
number of moles. The molar specific heat at constant volume is

cV =
CV

ν
=

1

ν

(

∂E

∂T

)

V

=
3

2
R (50)

The equipartition theorem works for rotational and vibrational degrees of freedom as
well. Suppose we have a diatomic molecule lying along the x axis. It can rotate about
the y axis and about the z axis. So the average rotational kinetic energy from both these
degrees of freedom is 2 × kBT/2. (We ignore rotations about the x axis because the
moment of inertia is too small.) In this case

E = N
(

5

2
kBT

)

=
5

2
νRT (51)
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and

cV =
5

2
R (52)

We can also have vibrations along the axis of the molecule. Think of the 2 atoms as
being connected by a spring. The average vibrational kinetic energy contributes kBT/2
and the average vibrational potential energy also contributes kBT/2. So if we add the
translational, rotational and vibrational degrees of freedom of a diatomic molecule, we
obtain 7 degrees of freedom and

E = N
(

7

2
kBT

)

=
7

2
νRT (53)

and

cV =
7

2
R (54)

Brownian Motion
Brownian motion was discovered by Brown, a botanist, in the 1800’s and was ex-

plained by Einstein in 1905. If you put a small macroscopic particle in a liquid and watch
it in a microscope, it jiggles around because the molecules in the liquid keep bumping
into it. This is called Brownian motion. The molecules in the liquid are moving around
because of thermal fluctuations. To see this, let the small macroscopic particle have a
mass m and be immersed in a liquid at temperature T . Consider the x−component of
the velocity vx.

vx = 0 (55)

Even though the mean value of the velocity vanishes, this does not mean that vx = 0.
There are velocity fluctuations so that v2

x 6= 0. From the equipartition theorem we have

1

2
mv2

x =
1

2
kBT (56)

or

v2
x =

kBT

m
(57)

The factor of 1/m means that the fluctuations are negligible for large m like a golf
ball. But when m is small (e.g., when the particle is micron sized), then the velocity
fluctuations become appreciable and can be observed under a microscope. Notice that
the size of the fluctuations are proportional to temperature. The higher the temperature,
the larger the fluctuations. This is what we expect of thermal fluctuations.
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