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of this particle, indicating the regions of this space which are accessible to the
particle.

Consider a system consisting of two weakly interacting particles, each of mass
m and free to move in cone dimension, Denote the respective position eoordi-
nates of the two particles by #, and z,, their respective momenta by p, and p,.
The particles are confined within a box with end walls located at z = 0 and
z = L. The total energy of the system is known to lie between F and E + 6E.
Since it is difficult to draw a four-dimensional phase space, draw separately the
part of the phase space involving 2, and «, and that involving p; and p,. Indi-
cate on these diagrams the regions of phase space accessible to the system.
Consider an ensemble of classical one-dimensional harmonie oscillators.

(a) Let the displacement « of an oscillator as a function of time ¢ be given
by 2 = A cos (wt + ). Assume that the phase angle ¢ is equally likely to
assume any value in its range 0 < ¢ < 2w. The probability w(e) de that ¢
lies in the range betwcen ¢ and ¢ + de s then simply w(e) de = 2x)71 de.
For any fixed time ¢, find the probability P(z) dx that x lies between zand ¢ + dz
by summing w{¢) de over all angles ¢ for which = lies in this range. Express
P(x) in terms of 4 and z.

{b) Consider the elassical phase space for such an ensemble of oscillators,
their energy being known to lie in the small range between £ and F + §E.
Calculate P(z) dz by taking the ratio of that volume of phase space lying in this
energy range and in the range between « and 4 dz to the total volume of phase
space lying in the energy range between £ and £ 4 6F (see Fig. 2-3-1). Express
P(z) in terms of E and z. By relating F to the amplitude 4, show that the
result is the same as that obtained in part (a).

Consider an isolated system eonsisting of a large number ¥ of very weakly inter-
acting localized particles of spin 3. FEach particle has a magnetic moment g
which can point either parallel or antiparallel to an applied field 7. The
energy E of the system is then £ = —(n, — ns)ulf, where n, is the number of
spins aligned parallel to A and n, the number of gpins aligned antiparallel to If.

(z) Consider the energy range between K and F 4 6F where 8F is very
small compared to E but is microscopically large so that 6F 2> uH. What is
the total number of states Q(E) lying in this energy range?

(b} Write down an expression for In @(F) as a function of E. Simplify
this expression by applying Stirling’s formula in its simplest form (A-6-2).

{c} Assume that the energy K is in a region where Q(E) is appreciable, L.e.,
that it is not close to the extreme possible values + NuH which it can assume.
In this case apply a Gaussian approximation to part (a) to obtain a simple
expression for 2(E) as a function of E.

Consider the infinitesimal quantity

Ade+ Bdy = dF

where A and B are both functions of & and y.
{@) Suppose that dF is an exact differential so that F' = F{z,y). Show that
A and B must then satisfy the condition
24 _ 0B
Ay dx

() If dF is an exact differential, show that the integral [dF evaluated
along any closed path in the xy plane must vanish.
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Consider the infinitesimal quantity
(x* ~ ) dz + zdy = dF (1)

(a) Ts this an exact differential?
(5) Evaluate the integral jdF between the points (1,1} and (2,2) of Fig.
2.11-1 along the straight-line paths connecting the following points:

(L1) = (1,2) — (2,2)
{L1) - (21) — (2,2)
(1,1) = (2,2)

{¢) Suppose that both sides of (1) are divided by 2% This yields the quan-
tity dG = dF/z*. Is d@ an exact differential?

{d) Evaluate the integral [d(¥ along the three paths of part (5).

Consider a particle confined within a box in the shape of & cube of edges
L, =L, = L.. The possibie cnergy levels of this particle are then given by
(2-1-3).

(a) Suppose that the particle is in a given state specified by particular
values of the three integers n., n,, and n,. By considering how the energy of
this state must change when the length L, of the box is changed quasistatically
by a small amount dl.., show that the force exerted by the particle in this state
on a wall perpendicular to the = axis is given by F, = —9E/dL..

(b) Calculate explicitly the force per unit area (or pressure) on this wall,

By averaging over all possible states, find an expression for the mean pressure
on this wall. (Exploit the property that the average values n.? = n,! = 0,2
must all be equal by symmetry.) Show that this mean pressure can be very
simply expressed in terms of the mean energy £ of the particle and the volume
ﬂ = HLHHLEH\N OM &—Hm UOX.
A systemn undergoes a quasi-static proeess which appears in a diagram of mean
pressure § versus volume ¥ as a closed curve. (See diagram. Such a process is
called “cyclic” since the system ends up in a final macrostate whieh is identical
to its initial macrostate.} Show that the work done by the system is given by
the area contained within the closed curve.
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2.9 The tension in a wire is increased quasi-statically from Fy to Fs.  If the wire has

length L, cross-sectional area A, and Young’s modulus ¥, calculate the work
done,
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PROBLEMS

The mean pressure § of a thermally insulated amount of gas varies with its
volume ¥V according to the relation

pVT =K

where v and K are constants. Find the work done by this gas in a quasistatic
process from & macrostate with pressure p; and volume V. to one with pressure
7 and volume V,. Express your answer in terms of &, Vi, 55, Vy, and v,

In a quasi-static process A — B (see diagram) in which no heat is exchanged
with the environment, the mean pressure § of a certain amount of gas is found to
change with its volume V aceording to the relation

p = aV™?

where o is & constant. Find the quasi-static work done and the net heat
absorbed by this system in each of the following three processes, all of which
take the system from macrostate 4 to macrostate B.

{@) The system is expanded from its original to its final volume, heat being
added to maintain the pressure constant. The volume is then kept constant,
and heat is extracted to reduce the pressure to 10° dynes cm™2

(b) The volume is increased and heat is supplied to ecause the pressure to
decrease lincarly with the volume. !

(¢) The two steps of process (a) are performed in the opposite order.

[ R
-
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Statistical thermodynamics

THE FUNDAMENTAL statistical postulate of equal a priori probabilities can be
used as the basis of the entire theory of systems in equilibriuni. In addition,
the hypothesis mentioned at the end of See. 2-3 (and based on the assumed
validity of the H theorem) also makes a statement about isolated systems not in
equilibrium, asserting that these tend to approach ultimate equilibrium situa-
tions (characterized by the uniform statistical distribution over accessible
states which is demanded by the fundamental postulate).

In this chapter we shall show how these basic statements lead to some very
general conclusions concerning all macroscopie systems. The important
results and relationships thus established constitute ihe bagic framework of
the discipline of “equilibrium statistical mechanies” or, as it is sometimes
called, “statistical thermodynamics.” Indeed, the major portion of this book
will deal with systems in equilibrium and will therefore be an elaboration of the
fundamental ideas developed in this chapter.

IRREVERSIBILITY AND THE ATTAINMENT OF EQUILIBRIUM

mw . .— Equilibrium conditions and constraints

Consider an isolated system whose energy is specified to lie in a narrow range.
As usual, we denote by Q the number of states accessible to this sysiem. By
our fundamental postulate we know that, in equilibrium, such a system is
equally likely to be found in any one of thesc states.

We recall briefly what we mean by ‘“accessible states.’” There are in
general some specified conditions which the system is known to satisfy. These
act as constraints which limit the number of states in which the system can
possibly be found without violating these conditions. The accessible states
are then all the states consistent with these eonstraints.

The constraints ean be described more quantitatively by specifying the
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evaluated for the mean energy £ = £ of the gas.  Here the right side is only a
function of £, but not of V. Thus it follows that. for an ideal gas 8 = 8(A)

or E=FKEmT (31211

Hence one reaches the important conclusion that the mean energy of an ideal
This
result is physically plausible.  An inerease in volume of the container increases
the mean distance between the molecules and thus changes, in general, their
mean potential encrgy of mutual interaction.  But in the case of an ideal gas
this interaction encrgy is negligibly smali, while the kinetic and infernal cnerglies
of the molecules do not depend on the distances hetween them. Hence the
total energy of the gas remains unchanged.

gas depends only on its {emperature and is independent of its volune
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PROBLEMS

3.1 A box s separated by a partition which divides its volume in the ratio 3:1. The
larger portion of the hox contains 1000 molecules of Ne gax; the smaller, 100
moleeules of He gas. A small hole is punctured in the partition, and one waits
until equilibrium is attained.

{a) Find the mean number of molecules of cach type on either side of the
partition.

{&) What is the probahi ity of finding 1000 molecules of Ne gas in the larger
portion and 100 molecules of He gas in the smaller (i.c., the same distribution
ar in the initial system)?

12

PROKLEM=

4.2 Consider a system ol N Joealized weakly interacling particles, each of spin & and
magnetic moment g located in un external magnetic Geld ff. This svRten was
already discus=ed in Problem 2.4,

() Using the expression for In Q(&) caleulated in Prablem 2,46 and the
definition @ - @ In &2 4K, find the relation between the shsohite temperature T
and the total energy /7 of this system,

{hy Under what circunmistanees s T negative”

{v) The total magnetic moment M of this svstemn is related to its Cnergy
Y. Use the result of part (@) to find A7 as a funetion of /f and the ahsolute
temperature 7',

3.3 Consicler two spin systems A and 1’ placed in an external ficld /7. Hystem A
eomsists of A weakly interacting loealized particles of spin + and magnetic moment
po Similarly, system A7 consists of V7 weakly interacting ized partieles of
spin 3 and magnetic moment g'. The two systems are inifially ixolated with
respective total energies BNl and DN 'w/'H. They are then placed in thermal
comtact with each other.  Suppose that 5[ << 1 and | < 1 so0 thal the simple
expressions of Problem 2.4¢ ean be wsed for the densities of <tates of the two

syvstems.
{a) In the most prebable situntion corresponding to the final thermal veiui-
[+ 1 re

librium, how is the energy £ of svstem .1 related to the enerey B of <svstem

(6) What is the value of the cnergy B of wystem A%

{¢) What is the heat Q@ ulworbed by svstem A in going froni the initial situstion
to the final situation when iCis in cquilibrium with 42

(@) What is the probability P{E) d1 that 1 has ii= final energy in the range
between £ oand F + F7

{e) What is the dispersion (A*/)2 = (/ — [ of (he enerpy ff of system A in
the final equilibriwun <ituation?

(f) What ix the value of the relative energy spreal |A*E f
N> N

3.4 Suppose that u system . i placed into thermal contact with o heat roservoir 4
which is at an absolute temperature 77 and that .1 absorbs an amount of heat 4]
in this process.  Show that the entropy inerease AS of .1 in this Process satisfies
the inequality AS > .77, where the equals sign is only valid if the initial tem-
perature of -1 differs infinitesimally from the temperature 77 of A7

3.5 Asystem consists of V) molecules of type 1 and V; motecules of type 2 confined
within a hox of volume 7. The moiecules are supposed to interact very weakly
so that they eonstitute an ideal s mixture.

{a) How does the total number of states (&) in the range between & and
E + 8K depend on the volume 1 of this svstemn?  You may treat the problem
classically.

(b) Use this result to find the cquation of state of this system, ie,, to find its
mmean pressure /7 as g function of 1" and T.

3.6 A glass bulb contains air at room temperature and at a pressure of 1 atmosphere,
It is placed in a chamber filled with helium gas 51 1 atmo=phere and at room tem-
perature. A few months later, the experimenter happens to read in a journal
article that the particular glass of which the bulb is made is quite permeable to
helium, although not to any other gases.  Assuming that equilibriuin has heen
attained by this time, what gas pressure will the experimenter measure inside the
bulb when he goes back to check? .

in the case when




