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(a) if N is even?

() if N is odd?
In the game of Russian roulette (not recommended by the author), one inserts
a single cartridge into the drum of a revolver, leaving the other five chambers
of the drum empty. One then spins the drum, aims at one’s head, and pulls the
trigger.

(a¢) What is the probability of being still alive after playing the game N
times?

(b) What is the probability of surviving (N — 1) turns in this game and then
being shot the N'th time one pulls the trigger?

(¢) What is the mean number of times a player gets the opportunity of
pulling the trigger in this macabre game?
Consider the random walk problem with p = ¢ and let m = n; — n, denote the
net displacement to the right. After a total of N steps, calculate the following
mean values: m, m?, m3, and m*.
Derive the binomial distribution in the following algebraic way, which does not
involve any explicit combinatorial analysis. One is again interested in finding
the probability W (n) of n successes out of a total of N independent trials. Let
w; = p denote the probability of a success, ws = 1 — p = ¢ the corresponding
probability of a failure. Then W(n) can be obtained by writing

2
E=1

Here each term contains N factors and is the probability of a particular combina-
tion of successes and failures. The sum over all combinations is then to be
taken only over those terms involving w; exactly n times, i.e., only over those
terms involving w,".

By rearranging the sum (1), show that the unrestricted sum can be written
in the form

(1)

Wawwe + ¢t
1

| [
e

2
W) =3
i=13

1 m

Win) = (wy + wa)¥

Expanding this by the binomial theorem, show that the sum of all terms in (1)
involving w,®, i.e., the desired probability W(n), is then simply given by the
one binomial expansion term which involves w;".

Two drunks start out together at the origin, each having equal probability of
making a step to the left or right along the x axis. Find the probability that
they meet again after N steps. It is to be understood that the men make their
steps simultaneously. (It may be helpful to consider their relative motion.)
The probability W(n) that an event characterized by a probability p occurs n
times in N trials was shown to be given by the binomial distribution

W(n) = s 20 = P

1)
Consider a situation where the probability p is small (p < 1) and where one is
interested in the case n << N. (Note that if N is large, W(n) becomes very
small if n — N because of the smallness of the factor p* when p <<1. Hence
W(n) is indeed only appreciable when n <K N.) Several approximations can
then be made to reduce (1) to simpler form.
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(a) Using the result In (1 — p) = —p, show that (1 — p)¥ ™ = ¢~ N>,
(b) Show that N!/(N — n)! = N~
(¢) Hence show that (1) reduces to

Win) = E e (2)
n!

where A = Np is the mean number of events. The distribution (2) is called the
“Poisson distribution.”
Consider the Poisson distribution of the preceding problem.
N
(a) Show that it is properly normalized in the sense that Z W.=1
n=0

(The sum can be extended to infinity to an excellent approximation, since W,
is negligibly small when n 2> N.)

(b) Use the Poisson distribution to calculate 7.

(c) Use the Poisson distribution to caleulate (An)? = (n — n)%.

Assume that typographical errors committed by a typesetter occur completely
at random. Suppose that a book of 600 pages contains 600 such errors. Use
the Poisson distribution to calculate the probability

(a) that a page contains no errors

(b) that a page contains at least three errors
Consider the « particles emitted by a radioactive source during some time inter-
val . One can imagine this time interval to be subdivided into many small
intervals of length Af. Since the « particles are emitted at random times, the
probability of a radioactive disintegration occurring during any such time Af is
completely independent of whatever disintegrations occur at other times.
Furthermore, Af can be imagined to be chosen small enough so that the proba-
bility of more than one disintegration occurring in a time Atf is negligibly small.
This means that there is some probability p of one disintegration occurring
during a time A¢ (with p << 1, since Af was chosen small enough) and proba-
bility 1 — p of no disintegration occurring during this time. Each such time
interval At can then be regarded as an independent trial, there being a total of
N = t/At such trials during a time ¢.

(2) Show that the probability W(n) of n disintegrations occurring in a time
t is given by a Poisson distribution.

(b) Suppose that the strength of the radioactive source is such that the

mean number of disintegrations per minute is 24. What is the probability of
obtaining n counts in a time interval of 10 seconds? Obtain numerical values
for all integral values of n from 0 to 8.
A metal is evaporated in vacuum from a hot filament. The resultant metal
atoms are incident upon a quartz plate some distance away and form there a
thin metallic film. This quartz plate is maintained at a low temperature so that
any metal atom incident upon it sticks at its place of impact without further
migration. The metal atoms can be assumed equally likely to impinge upon
any element of area of the plate.

If one considers an element of substrate area of size b? (where b is the metal
atom diameter), show that the number of metal atoms piled up on this area
should be distributed approximately according to a Poisson distribution. Sup-
pose that one evaporates enough metal to form a film of mean thickness corre-
sponding to 6 atomic layers. What fraction of the substrate area is then not
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covered by metal at all? What fraction is covered, respectively, by metal
layers 3 atoms thick and 6 atoms thick?
A penny is tossed 400 times. Find the probability of getting 215 heads. (Sug-
gestion: use the Gaussian approximation.)
A set of telephone lines is to be installed so as to connect town A to town B.
The town A has 2000 telephones. If each of the telephone users of 4 were to
be guaranteed instant access to make calls to B, 2000 telephone lines would be
needed. This would be rather extravagant. Suppose that during the busiest
hour of the day each subscriber in A requires, on the average, a telephone con-
nection to B for two minutes, and that these telephone calls are made at random.
Find the minimum number M of telephone lines to B which must be installed
so that at most only 1 percent of the callers of town A will fail to have immediate
access to a telephone line to B. (Suggestion: approximate the distribution by
a Gaussian distribution to facilitate the arithmetic.)
Consider a gas of N, noninteracting molecules enclosed in a container of volume
V,. Focus attention on any subvolume V of this container and denote by N
the number of molecules located within this subvolume. Each molecule is
equally likely to be located anywhere within the container; hence the proba-
bility that a given molecule is located within the subvolume V is simply equal
to V/Vo.

(a) What is the mean number N of molecules located within ¥? Express
your answer in terms Ng, Vo, and V.

(b) Find the relative dispersion (N — N)2/N? in the number of molecules
located within ¥. Express your answer in terms of N, ¥, and V,.
(¢) What does the answer to part (b) become when V << V,?

(d) What value should the dispersion (N — N)? assume when V — V,?
Does the answer to part (b) agree with this expectation?
Suppose that in the preceding problem the volume V under consideration is
such that 0 K V/V, << 1. What is the probability that the number of mole-
cules in this volume is between N and N + dN?
A molecule in a gas moves equal distances ! between collisions with equal proba-
bility in any direction. After a total of N such displacements, what is the mean
square displacement R? of the molecule from its starting point?
A battery of total emf V is connected to a resistor R; as a result an amount of
power P = V?/R is dissipated in this resistor. The battery itself consists of N
individual cells connected in series so that V is just equal to the sum of the emf’s
of all these cells. The battery is old, however, so that not all cells=are in perfect
condition. Thus there is only a probability p that the emf of any individual
cell has its normal value v; and a probability 1 — p that the emf of any individual
cell is zero because the cell has become internally shorted. The individual cells
are statistically independent of each other. TUnder these conditions, calculate
the mean power P dissipated in the resistor, expressing the result in terms of
N, v, and p.
Consider N similar antennas emitting linearly polarized electromagnetic radia-
tion of wavelength A and velocity ¢. The antennas are located along the z axis
at a separation A from each other. An observer is located on the z axis at a
great distance from the antennas. When a single antenna radiates, the observer
measures an intensity (i.e., mean-square electric-field amplitude) equal to I.

(@) If all the antennas are driven in phase by the same generator of fre-
quency » = ¢/A, what is the total intensity measured by the observer?
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Similarly, it follows that if the external parameters of a system are kept
fixed so that it does no work, then dW = 0 and (2-8-3) reduces to

dQ = dE

so that d@Q becomes an exact differential. The amount of heat @ absorbed in
going from one macrostate to another is then independent of the process used
and depends only on the mean energy difference between them.

SUGGESTIONS FOR SUPPLEMENTARY READING

Statistical formulation

R. C. Tolman: “The Principles of Statistical Mechanics,” chaps. 3 and 9, Oxford
University Press, Oxford, 1938. (This book is a classic in the field of statistical
mechanics and is entirely devoted to a careful exposition of fundamental ideas.
The chapters cited discuss ensembles of systems and the fundamental statistical
postulate in classical and quantum mechanics, respectively.)

Work and heat—macroscopic discussion

M. W. Zemansky: “Heat and Thermodynamics,” 4th ed, chaps. 3 and 4, McGraw-Hill
Book Company, New York, 1957.

H. B. Callen: “Thermodynamics,” secs. 1.1-1.7, John Wiley & Sons, Inc., New York,
1960. (The analogy mentioned on pp. 19 and 20 is particularly instrictive.)

PROBLEMS

2.1 A particle of mass m is free to move in one dimension. Denote its position
coordinate by z and its momentum by p. Suppose that this particle is confined
within & box so as to be located between z = 0 and # = L, and suppose that its
energy is known to lie between E and E + 6E. Draw the classical phase space

* Paddle wheels such as this were historically used by Joule in the last century to estab-
lish the equivalence of heat and mechanical energy. In the experiment just mentioned we
might equally well replace the paddle wheel by an electric resistor on which electrical work
can be done by sending through it a known electric current.
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of this particle, indicating the regions of this space which are accessible to the
particle.

Consider a system consisting of two weakly interacting particles, each of mass
m and free to move in one dimension. Denote the respective position coordi-
nates of the two particles by z; and z,, their respective momenta by p, and p..
The particles are confined within a box with end walls located at z = 0 and
z = L. The total energy of the system is known to lie between E and E + §E.
Since it is difficult to draw a four-dimensional phase space, draw separately the
part of the phase space involving z, and z. and that involving p, and p.. Indi-
cate on these diagrams the regions of phase space accessible to the system.
Consider an ensemble of classical one-dimensional harmonic oscillators.

(a) Let the displacement z of an oscillator as a function of time ¢ be given
by z = A cos (wi + ¢). Assume that the phase angle ¢ is equally likely to
assume any value in its range 0 < ¢ < 2wr. The probability w(e) de that ¢
lies in the range between ¢ and ¢ + dy is then simply w(¢) de = (27)~! de.
For any fixed time ¢, find the probability P(z) dz that z lies between z and = + dz
by summing w(¢) de over all angles ¢ for which z lies in this range. Express
P(z) in terms of A and z.

(b) Consider the classical phase space for such an ensemble of oscillators,
their energy being known to lie in the small range between E and E + 8E.
Calculate P(z) dz by taking the ratio of that volume of phase space lying in this
energy range and in the range between « and z + dz to the total volume of phase
space lying in the energy range between E and £ + 8F (see Fig. 2-3-1). Express
P(z) in terms of E and z. By relating E to the amplitude A4, show that the
result is the same as that obtained in part (a).

Consider an isolated system consisting of a large number N of very weakly inter-
acting localized particles of spin . Each particle has a magnetic moment p
which can point either parallel or antiparallel to an applied field H. The
energy E of the system is then E = —(n; — no)uH, where n, is the number of
spins aligned parallel to H and n; the number of spins aligned antiparallel to H.

(a) Consider the energy range between E and E + 8E where 8E is very
small compared to E but is microscopically large so that 6E >> pH. What is
the total number of states Q(E) lying in this energy range?

(b) Write down an expression for In 2(E) as a function of Z. Simplify
this expression by applying Stirling’s formula in its simplest form (A-6-2).

(¢) Assume that the energy E is in a region where Q(E) is appreciable, i.e.,
that it is not close to the extreme possible values + NuH which it can assume.
In this case apply a Gaussian approximation to part (a) to obtain a simple
expression for Q(E) as a function of E.

Consider the infinitesimal quantity

Adz+ Bdy = dF

where A and B are both functions of z and .
(a) Suppose that dF is an exact differential so that F = F(z,y). Show that
A and B must then satisfy the condition

04 _ a8
dy oz

(b) If dF is an exact differential, show that the integral [dF evaluated
along any closed path in the zy plane must vanish.




