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PHYSICS 214A
Final Exam Solutions

March 19, 2009

1. Do not open the exam until instructed to do so.

2. Write your answers in the spaces provided for each part of each problem. Place
answers in the boxes if provided. Show your calculations in the available space or
the blank facing page. Please write clearly. If we can’t read your writing, you won’t
get credit.

3. Clearly explain your solutions. Give explanations in words for the main steps of
your arguments and define your symbols and variables.

R = 8.314 J/K-mol kB = 1.38054× 10−23 J/K
1 atm = 1.013 × 105 N/m2 273 K = 0o C
h̄ = 1.05 × 10−34 J s c = 3.00 × 108 m/s
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A MAX POINTS SCORE INITIALS

Problem 1 60

Problem 2 10

Problem 3 10

Problem 4 10

Problem 5 10

Total 100



1. Short Answer(60 points)

(a) (6 points) A block of silicon has a heat capacity of 1 J/K at T = 20 K.
Estimate the heat capacity C at T = 10 K. Silicon is an insulator at these
temperatures.

Answer: Use the Debye specific heat which has the form

CV = AT 3 (1)

where A is a constant that we can find as follows:

A =
CV (T = 20 K)

(20 K)3
(2)

So

CV (T = 10 K) =
(10 K)3

(20 K)3
CV (T = 20 K)

=
1

8
CV (T = 20 K)

= 0.125 J/K (3)

C = 0.125 J/K

(b) (6 points) The electrical resistivity ρ of a metal at room temperature is propor-
tional to the probability that an electron is scattered by the vibrating atoms
in the lattice, and this probability is in turn proportional to the mean square
amplitude of vibration of these atoms. Assuming classical statistics to be valid
in this temperature range, what is the dependence of the electrical resistivity
ρ on the absolute temperature T?

Answer: From the equipartition theorem,

〈1
2
mω2x2〉 = 3

2
kBT (4)

So
ρ ∼ 〈x2〉 ∼ T (5)

ρ(T ) ∼ T
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(c) (6 points) A wire of length L, radius r, and resistance R carries a current I.
If thermal conduction along the wire is negligible, write an equation for the
steady state temperature T of the wire. Explain your reasoning.

Answer: The power P = I2R dissipated in the wire equals the power radiated
by blackbody radiation Pr where

Pr = P tot
e A (6)

where the total power P tot
e emitted per unit area is given by the Stefan-

Boltzmann law:

P tot
e = σT 4 σ ≡ π2

60

k4B
c2h̄3

(7)

and A is the surface area of the wire:

A = 2πrL (8)

So we have

P = σT 4A = I2R

T 4 =
I2R

σA
=

I2R

2πrσL
(9)

T =
(

I2R
2πrσL

)1/4

(d) (6 points) In the pressure versus temperature phase diagram for 3He, the
melting curve has a negative slope (dp/dT < 0). Like most substances, solid
3He is denser than liquid 3He. Suppose we have an equilibrium mixture of solid
and liquid 3He. If a small amount of heat Q is added to this mixture, will
some solid converted into liquid or will some liquid be converted into solid?
Or neither? Assume the mixture is still a mixture of solid and liquid after the
heat is added (though with possibly different proportions of liquid and solid).
Explain your reasoning.

Answer: Liquid 3He will be converted into solid. To understand why, note
that from the Clausius-Clapeyron equation:

dp

dT
=

∆s

∆v
< 0 (10)

where s is the entropy per mole and v is the volume of a mole. Since the solid
is denser than the liquid, the volume of 1 mole of the solid is less than the
volume of 1 mole of the liquid. So

∆v = vsolid − vliquid < 0 (11)
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Thus the Clausius-Clapeyron equation implies that

∆s = ssolid − sliquid > 0

ssolid > sliquid

So when heat Q is added, the entropy of the mixture increases by an amount

∆S =
Q

T
(12)

This added entropy goes into converting liquid into solid which is the higher
entropy phase. Note that when solid and liquid coexist, the temperature T
stays constant as long as the pressure P is constant.

Note that ∆S = Q/T is not the same ∆s as one sees in the Clausius-Claperyon
equation where ∆s = sphase 1 − sphase 2. For example, suppose

dp

dT
=

∆s

∆v
< 0

∆v = vliquid − vsolid > 0

∆s = sliquid − ssolid < 0

So when heat is added, Q = T∆S > 0, but we can have ∆s = sliquid−ssolid < 0,
and sliquid < ssolid.
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(e) (6 points)

i. Is a neutral 4He atom a boson or a fermion? Explain your reasoning.
Answer: 4He is a boson. A neutral atom has 2 protons, 2 neutrons, and
2 electrons. Adding the spin of 6 fermions, each with spin 1/2, gives an
integer spin to 4He. So 4He is a boson because bosons have integer spin.

ii. Is a neutral 3He atom a boson or a fermion? Explain your reasoning.
Answer: 3He is a fermion. A neutral 3He atom has 2 protons, 1 neutron,
and 2 electrons. Adding the spin of 5 fermions, each with spin 1/2, yields
a half integer spin. So 3He is a fermion because fermions have half-integer
spin.
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(f) (6 points) State the ergodic hypothesis.

Answer: The ergodic hypothesis assumes that a system will visit all possi-
ble microstates after a sufficiently long time. It is assumed that the system
traverses all the possible microstates fast enough that the time averages are
identical with the averages taken over a large collection of identical and inde-
pendent systems, i.e., an ensemble average.

(g) (6 points) What is an ensemble? What are the different types of ensembles?
What quantities are held fixed for each of them? Be sure to define all variables.

Answer: An ensemble is a hypothetical collection of identically prepared
systems, all subject to the same initial conditions and the same set {X} of
external parameters such as the total energy, particle number, and volume.
The systems in the ensemble will, in general, be in different microstates and
will, therefore, also be characterized by different macroscopic parameters (e.g.,
by different values of pressure or magnetization).

There are 3 different types of ensembles:

i. Microcanonical Ensemble fixes E and N where E is the total energy and
N is the total number of particles.

ii. Canonical Ensemble fixes the temperature T and N .

iii. Grand Canonical Ensemble fixes T and the chemical potential µ.
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(h) (6 points) Explain why water molecules in equilibrium form ice at low tem-
peratures and liquid water at higher temperatures.

Answer: Ice has a lower internal energy E while water has a higher entropy S.
The goal is to minimize the free energy F = E − TS (or G = E − TS + pV ).
At high temperatures, TS is important which implies that large entropy is
important. This, in turn, implies that water has a lower free energy than ice.
At low temperatures, TS is small, so F ≈ E is lower for ice than for water.

(i) (6 points) What is the difference between intensive and extensive parameters?
Give an example of each.

Answer: An extensive parameter is proportional to the size of the system. Ex-
amples of extensive parameters include the total mass, total volume, internal
energy E, total entropy S, and heat capacity. An intensive parameter is un-
changed if the size or the mass or the number of particles doubles. Examples
of intensive parameters include temperature, pressure, and specific heat.
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(j) (6 points) N noninteracting particles of mass m are in a box of volume V .
The particles are in equilibrium with a heat bath at temperature T . In terms
of these variables and the fundamental constants, what is the condition for
the validity of the classical appoximation for calculating the thermodynamic
properties of the gas? Show your work and explain your reasoning.

Answer: (See notes from lecture 11.) Let λ be the mean de Broglie wave-
length. Let R be the mean separation of the ideal gas atoms. The classical
approximation applies when

RÀ λ (13)

i.e., the mean separation between particles is much greater than their mean
de Broglie wavelength. One way to see this is to begin with the uncertainty
relation:

∆x∆p
>∼ h̄ (14)

We expect ∆x
<∼ R and ∆p

<∼ p where p is the mean momentum. Then we
would expect that classical mechanics would adequately describe the dynamics
of the gas whenever

RpÀ h̄ (15)

This effectively says that h̄ is negligible. Recall that

p =
2πh̄

λ
=

h

λ
(16)

Then
RpÀ h̄ (17)

becomes

RÀ h̄

p
=

λ

2π
(18)

This is equivalent to Eq. (13).

To relate R and λ to the variables given in the problem, we note the following.
First imagine each molecule at the center of a little cube of side R, these cubes
filling the available volume V . Then

R
3
N = V (19)

or

R =
(

V

N

)1/3

(20)

Next, we use Eq. (16) to relate the mean de Broglie wavelength to the mean
momentum:

p =
2πh̄

λ
=

h

λ
(21)
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The mean momentum p can be estimated using the equipartition theorem

p2

2m
≈ 3

2
kBT (22)

or
p ≈

√

3mkBT (23)

and

λ ≈ h√
3mkBT

(24)

Hence the condition that the classical description should be valid is

(

V

N

)1/3

À h√
3mkBT

(25)

So for large masses and high temperatures we expect classical mechanics to
hold.
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2. (10 points) A MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is
commonly used to study two dimensional electron gases. A simple approximation
to a MOSFET is a parallel plate capacitor with capacitance C. Each plate has an
area A. Suppose a (gate) voltage V is applied across the capacitor plates. The
charge on the capacitor is Q. Regard the charge −Q as residing on the inner
surface of the negatively charged plate so it constitutes a two dimensional electron
gas. Find the Fermi energy EF as a function of the voltage V .

Solution: Let N be the number of electrons on the lower plate and e be the
electron charge. Let No be the number of electrons on the lower plate when the
voltage V = 0, and ∆N be the number of electrons added to the lower plate as a
result of V 6= 0. So N = No +∆N . Then

−Q = −∆Ne or Q = ∆Ne (26)

Find the density of states assuming isotropy:

A

(2π)2
d2k =

A · 2πkdk
(2π)2

=
A

(2π)
kdk (27)

If we fill up states at T = 0 up to the Fermi wavevector kF , then

N = 2
A

(2π)

∫ kF

0
kdk

= 2
A

(2π)

1

2
k2F

=
Ak2F
2π

k2F =
2πN

A

EF =
h̄2k2F
2m

=
2πh̄2N

2mA

=
πh̄2N

mA
(28)

where the factor of 2 comes from the 2 spin states of the electron. Now use

Q = ∆Ne = CV

∆N =
CV

e
N = No +∆N (29)

EF =
πh̄2

mA

(

No +
CV

e

)

(30)
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Alternatively, one can go back to Eq. (27) and convert kdk into dE as follows:

E =
h̄2k2

2m
dE =

h̄2kdk

m
→ kdk =

mdE

h̄2
(31)

So the density of states is

ρ(E)dE =
A

2π
kdk =

Am

2πh̄2
dE (32)

Summing over the occupation of all states must yield N .

N = 2
∑

r

1

eβ(E−µ) + 1
(33)

where the factor of 2 is for spin, β = 1/kBT , and µ is the chemical potential.
Convert the sum into an integral:

N = 2
∫ ∞

0
dEρ(E)

1

eβ(E−µ) + 1

=
2Am

2πh̄2

∫ ∞

0
dEρ(E)

1

eβ(E−µ) + 1
(34)

Note that EF = µ(T = 0). At T = 0, β = ∞ and the Fermi function becomes a
step function that is unity for E < EF and zero otherwise. So we have

N =
2Am

2πh̄2

∫ EF

0
dE

=
Am

πh̄2
EF

EF =
πh̄2

m

N

A
(35)

Thus we recover Eq. (28).

EF (V ) = πh̄2

mA

(

No +
CV
e

)
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3. (10 points) Consider an equilibrium system with N identical noninteracting mag-

netic atoms subjected to an external magnetic field ~H = Hẑ at temperature T .
Each atom has spin 1/2 and a magnetic moment ~µ. When ~µ is parallel to ~H, the

energy is E− = −µH. When ~µ is antiparallel to ~H, the energy is E+ = +µH. Find
the magnetization M/N per spin and the entropy per spin S/N as a function of T
and H.

Solution:

Start with the partition function Z:

Z = ζN

ζ =
∑

r

e−βEr = eβµH + e−βµH = 2 cosh(βµH) = 2 cosh
(

µH

kBT

)

lnZ = N ln ζ

= N ln
[

2 cosh
(

µH

kBT

)]

F = −kBT lnZ = −NkBT ln
[

2 cosh
(

µH

kBT

)]

(36)

There are 2 ways to calculate the magnetization per spin M/N :

(a)

M =
1

β

∂ lnZ

∂H

=
N

β

∂ ln ζ

∂H

M

N
= µ

eβµH − e−βµH

eβµH + e−βµH

= µ tanh
(

µH

kBT

)

(37)

(b)

M = Nµ

= N (P↑µ↑ + P↓µ↓)

= Nµ
eβµH − e−βµH

eβµH + e−βµH
(38)

where we used µ↑ = −µ↓ = µ, P↑ = exp(βµH)/ζ, and P↓ = exp(−βµH)/ζ.
Thus

M

N
= µ tanh

(

µH

kBT

)

(39)
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There are 2 ways to obtain the entropy S:

(a)

S = kB
(

lnZ + βE
)

E = −∂ lnZ
∂β

= −N ∂

∂β
ln
(

eβµH + e−βµH
)

= −N
(

µHeβµH − µHe−βµH
)

eβµH + e−βµH

= −NµH tanh
(

µH

kBT

)

S

N
= kB

{

ln
[

2 cosh
(

µH

kBT

)]

−
(

µH

kBT

)

tanh
(

µH

kBT

)}

(b) Use F from Eq. (36) and

S = −
(

∂F

∂T

)

V

= NkB ln
[

2 cosh
(

µH

kBT

)]

+NkBT
2 sinh

(

µH
kBT

)

·
(

− µH
kBT 2

)

2 cosh
(

µH
kBT

)

S

N
= kB

{

ln
[

2 cosh
(

µH

kBT

)]

−
(

µH

kBT

)

tanh
(

µH

kBT

)}

M/N = µ tanh
(

µH
kBT

)

S/N = kB
{

ln
[

2 cosh
(

µH
kBT

)]

−
(

µH
kBT

)

tanh
(

µH
kBT

)}
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4. (10 points) Blackbody radiation: In studying blackbody radiation, we found that
the total energy density uo(T ) = σT 4 where σ is a constant. What is the entropy
S of a gas of photons in equilibrium at temperature T in a box of volume V ?

Answer:

Method I:
uo(T ) = σT 4 (40)

So the total energy E is given by

E = uo(T )V

= σT 4V

The heat capacity is given by

CV =
dE

dT

∣

∣

∣

∣

∣

V

= 4σT 3V (41)

The entropy is given by

S =
∫ T

0

CV

T
dT = 4σV

∫ T

0
T 2dT =

4

3
σT 3V (42)

Method II:

dE = dQ− dW

dW = 0

dE = dQ = TdS

dS =
dE

T

Now use

E = uo(T )V = σT 4V

dE =
dE

dT
dT = 4V σT 3dT

to obtain

S =
∫ dE

T

=
∫ T

0

4σV T 3dT

T

= 4σV
∫ T

0
T 2dT

=
4

3
σV T 3

14



S = 4
3
σT 3V
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5. (10 points) A Metropolis Monte Carlo simulation of a large interacting system is
performed at a fixed temperature T and a fixed volume V . The temperature is high
in the sense that it is larger than any interaction energies. A histogram is made of
the energies that the system has during the course of the simulation. A Gaussian
distribution is a good fit to the histogram. Thus, the energy distribution P (E) is
given by

P (E) =
1√
2πσ

e−(E−E)2/2σ2

(43)

where E is the energy of the system, E is the mean energy, and σ is the root-
mean-square deviation of the energy from the mean energy. Find the heat capacity
CV (T ) of this system.

Answer: From lecture 9:

CV (T ) = kBβ
2(∆E)2 =

(∆E)2

kBT 2
=

σ2

kBT 2
(44)

To see where this comes from, let us calculate the dispersion (∆E)2 in the energy:

(∆E)2 = (E − E)2 = E2 − 2EE + E
2
= E2 − E

2
(45)

E = −∂ lnZ
∂β

= − 1

Z

∂Z

∂β
(46)

We need now to compute E2:

E2 =

∑

r E
2
re
−βEr

∑

r e−βEr

(47)

But
∑

r

E2
re
−βEr = − ∂

∂β

(

∑

r

Ere
−βEr

)

=

(

− ∂

∂β

)2 (
∑

r

e−βEr

)

(48)

And from the definition of the partition function Z

E2 =
1

Z

∂2Z

∂β2
(49)

This can be rewritten as

E2 =
∂

∂β

(

1

Z

∂Z

∂β

)

+
1

Z2

(

∂Z

∂β

)2

= −∂E
∂β

+ E
2

(50)

Finally we obtain

(∆E)2 = E2 − E
2
= −∂E

∂β
(51)
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or

(∆E)2 =
∂2 lnZ

∂β2
(52)

Now recall

CV =
∂E

∂T

∣

∣

∣

∣

∣

V

=

(

∂E

∂β

∂β

∂T

)

V

= − 1

kBT 2

∂E

∂β

∣

∣

∣

∣

∣

V

= − kBβ
2∂E

∂β

∣

∣

∣

∣

∣

V

(53)

But

E = −∂ lnZ
∂β

(54)

Therefore

CV = kBβ
2∂

2 lnZ

∂β2
= kBβ

2(∆E)2 =
σ2

kBT 2
(55)

CV (T ) =
σ2

kBT 2
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