
LECTURE 11

Superconducting Phase Transition
At TC there is a second order phase transition from a normal metal into a supercon-

ducting state that is much like the superfluid transition. Just as in Bose condensation,
the electrons can be described by a coherent wavefunction or order parameter ψ = |ψ|eiφ.
Gauge symmetry is broken and there is a coherent phase φ throughout the superconduc-
tor.

Superconducting Gap
The condensation energy that is gained upon forming the condensate results in a

gap in the density of states. This can explain the absence of resistance. Recall that
in the normal metal there were empty states just above the Fermi energy. Electrons
which occupy states near or at the Fermi energy can easily make transitions into these
empty states. Jumping into empty states is what happens when an electron scatters off
some impurity or imperfection or sound vibration (phonon) in the metal. This results in
inelastic scattering, dissipation, and electrical resistance. In the superconducting state,
a gap in the electron density of states opens around the Fermi surface. By “gap” I mean
that there are no states near the Fermi energy.
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The states that used to be where the gap now is have been squished to either side. At
T = 0, the states below the gap are filled and the states above the gap are empty. Now it
is much harder for electrons to scatter off of impurities because they need a finite amount
of energy to get to a state on the other side of the gap. If there isn’t enough energy in
the scattering process to get to an unoccupied state, then the electron doesn’t change
its state, there is no dissipation, and hence there is no electrical resistance. Forming
the gap is analogous to the binding energy gained by forming a molecule from single
atoms. The atoms gain energy by sharing their electrons. To break a chemical bond
requires a minimum amount of energy just as to get across the superconducting gap
requires a minimum amount of energy. The gap doesn’t appear suddenly at TC ; it opens
up gradually as T decreases below TC , just like the order parameter. In fact the gap is
basically the real part of the order parameter.
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The presence of the gap in the density of states has been confirmed by tunneling
experiments for which Ivar Giaver won the Nobel Prize. In these experiments a super-
conductor and a normal metal were juxataposed with a thin (∼ 20 Å) insulting barrier
between them. This is a tunnel junction. (Classically electrons cannot go through an
insulating barrier but quantum mechanically their wavefunction has a finite amplitude on
the other side of the barrier, indicating that there is a finite probability for the electron
to tunnel through the barrier.)
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Then a voltage is applied across the junction and the current is measured. This
provides a way of trying to inject electrons from the vicinity of the Fermi surface of the
normal metal into the superconductor. The electrons can flow into the superconductor
if there are empty states for them to jump into but they can’t flow if there are no states
available in the superconductor.
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For T = 0, current flows when eV = ∆, where V is the voltage across the junction
and 2∆ is the energy gap. Conventionally the “energy gap” refers to 2∆.

At T > 0 there is finite probability that the states above the gap are populated. This
is roughly given by the Boltzmann probability e−βE where the energy E is measured from
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the center of the gap. E must be at least the size of the gap ∆. The presence of a gap
explains the exponential decrease of the specific heat and the thermal conductivity below
TC . The specific heat gives us some idea of how many more states can be populated
as the temperature increases by a small amount dT . As the temperature increases, the
only states available are those above the gap. The probability of occupying those states
goes as e−β∆. This is like the Arrhenius law. Exponential behavior usually signals the
presence of a gap in the energy spectrum. Similarly the thermal conductivity decreases
exponentially because the thermal conductivity κ is proportional to the specific heat.
(κ = 1

3
CV veℓ where ve is the electron drift velocity and ℓ is the electron mean free path,

i.e., how far the electron gets before colliding with something.) In a metal it is primarily
the electrons which are responsible for heat conduction. To carry heat, you must heat up
the electrons on one side of the sample, have them run to the other side of the sample, and
then dump their heat there. When we heat up electrons, we mean that we excite them
into higher energy states. But the presence of a gap presents a barrier for the electrons
to get into excited states. This is why the thermal conductivity of a superconductor is
so poor.

BCS Theory of Superconductivity
In 1957 John Bardeen, Leon Cooper, and Bob Schrieffer (BCS) developed a micro-

scopic theory of superconductivity. They wrote down a wavefunction for the supercon-
ductor consisting of electron pairs (~k ↑, −~k ↓). Notice that these are time reversed states.
These pairs are called Cooper pairs. The idea behind the pairing is that an electron goes
whizzing through the lattice and creates a distortion of the positive ions (atoms) in the
lattice. They are positive ions because they donated their outer shell electrons to be
conduction electrons. The positive ions are attracted to the negative electron whizzing
by, but they are much heavier than the electron, so by the time they move toward the
electron, it’s long gone. But another electron is attracted to the increased concentration
of positive charge. So the 2 electrons have interacted indirectly via a lattice distortion.
Quanta of lattice distortions and vibrations are called phonons. So we say that phonons
mediate the interaction between the electrons. Notice that the interaction between the
electrons is attractive. Electrons also repel each other because of Coulomb interactions,
but this attraction occurs because it is delayed in time. We say that the interaction is
retarded.

So we can think of the Fermi sea below the superconducting gap as being filled
with Cooper pairs. The gap represents the energy required to break one of these pairs
and promote an electron into a state lying above the gap. The gap represents a pair
binding energy. One should not necessarily think of tightly bound pairs. In an ordinary
superconductor, the electrons in a Cooper pair may be 1 µm apart and have of order 106

electrons between them. It’s like dancing in a crowded ballroom with your partner on
the other side of the room from you.

Recall that when we talked about flux quantization, we said that the flux quantum
was given by Φo =

hc
2e
. The denominator “2e” comes from having 2 electrons in a Cooper

pair.
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The BCS theory was very successful in explaining the properties of superconduc-
tivity such as the Meissner effect, zero electrical resistivity, flux quantization and the
superconducting gap.

Flux Quantization
As we discussed earlier, the superconducting state can be described by an order

parameter ψ:
ψ(~r) =

√
npe

iθ(~r) (1)

where np is the number density of superconducting electron pairs. Ginzburg and Landau
used this order parameter to write down a phenomenological theory of superconductivity.
In the superconducting state, the wavefunction acquires a certain rigidity in that there
is a global phase θ. This has important consequences. These consequences include the
Meissner effect and flux quantization. Let’s see how this works.

In the presence of a magnetic field ~B = ∇× ~A, where ~A is the vector potential, the
Hamiltonian has the form

H =
1

2m

(

~p− q

c
~A

)2

(2)

where q = 2e is the charge. The generalized momentum

~Π =
(

~p− q

c
~A

)

(3)

Using Hamilton’s equation for the velocity ~v:

~v =
∂H

∂~Π
(4)

we find

~v =
1

m

(

~p− q

c
~A

)

=
1

m

(

−ih̄∇− q

c
~A

)

(5)

The particle flux is given by

ψ∗~vψ =
np

m

(

h̄∇θ − q

c
~A

)

(6)

where np is the number density of superconducting pairs. Here we used (1) for ψ. If we
think of np ∼ ψ∗ψ, then particle flux is ∼ np~v. The electric current density is ∼ qnp~v or,
more correctly,

~j = qψ∗~vψ =
qnp

m

(

h̄∇θ − q

c
~A

)

(7)

To show flux quantization, let us consider a superconducting ring or torus. Let us
take a closed path C through the interior of the ring or torus, well away from the surface.
The Meissner effect tells us that ~B and ~j are zero in the interior. So if we plug ~j = 0
into (7), we get

h̄∇θ = q

c
~A (8)
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Hit both sides of this equation with a closed line integral
∮

C dℓ:
∮

C
h̄∇θ · dℓ =

∮

C

q

c
~A · dℓ (9)

The left hand side gives the change of phase on going once around the ring.
∮

C
h̄∇θ · dℓ = h̄(θ2 − θ1) (10)

The wavefunction must be single valued, so

h̄(θ2 − θ1) = 2πh̄s (11)

where s is an integer. The right hand side (9) yields the flux Φ:

q

c

∮

C

~A · dℓ = q

c

∫

SC

∇× ~A · d~a =
q

c

∫

SC

~B · d~a =
q

c
Φ (12)

SC is the surface bounded by the curve C. Φ is the magnetic flux through SC . Putting
all this together gives

2πh̄s =
q

c
Φ (13)

or

Φ =

(

2πh̄c

q

)

s = sφo (14)

Thus the flux through the ring is quantized in integral multiples of the flux quantum:

φo =
2πh̄c

q
=

2πh̄c

2e
=
hc

2e
≈ 2.07× 10−7 gauss− cm2 (15)

Type I and Type II Superconductors
When we mentioned the Meissner effect, we said that a superconductor expels a

magnetic field. But it costs energy to do this. So if the magnetic field is strong enough,
it will destroy the superconductivity. Superconductors can behave in 2 ways as the field
is increased. This results in classifying superconductors into 2 catagories.

Type I Superconductors: As the magnetic field is increased, the system goes discontin-
uously from being perfectly superconducting and perfectly diamagnetic to normal
with complete penetration of the magnetic field. The value of the field at which
this transition takes place is called the critical field Hc:

∆GNS =
H2
c

8π
(16)

where ∆GNS is the Gibbs free energy per unit volume that is gained by going from
the normal state to the superconducting state in zero field. The right hand side is
the energy density of the critical magnetic field. So

Hc =
√

8π∆GNS (17)
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Type II Superconductors: For H < Hc1, the superconductor expels flux completely and
behaves like a type I superconductor. For Hc1 < H < Hc2, there is partial field pen-
etration in the form of vortex lines of magnetic flux. They’re sort of like tornadoes
with electric current instead of wind swirling around. Each vortex contains one
flux quantum Φo. The vortex cores contain normal (rather than superconducting)
electrons. If the vortices move, one can get electrical resistance from the scattering
of these normal electrons. Hc2 is typically of order tens of Tesla. For H > Hc2, the
field penetrates uniformly and the system is a normal metal. Type II superconduc-
tors are used to construct high field magnets such as those used in MRI and in the
big high energy accelerators like at Fermilab and CERN.
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High Temperature Superconductors
Type II superconductors tend to have higher transition temperatures than type I

superconductors. Indeed the high temperature superconductors are type II superconduc-
tors. It all began in 1986 when J. G. Bednorz and K. A. Müller published a somewhat
obscure article in Z. Phys. B where they announced that a La–Ba–Cu–O compound
began to go superconducting at 35 K. This broke the long standing ceiling of TC = 23
K in intermetallic compounds. Their discovery was confirmed by workers at the Uni-
versity of Tokyo and Paul Chu’s group at the University of Houston. Early in 1987, it
was found that replacing Ba with Sr raised TC to 40 K (La2−xSrxCuO4). It was soon
found by Chu’s group that YBa2Cu3O7−δ (“YBCO”) had a TC a few degrees above 90
K. This meant that it would be superconducting at liquid nitrogen temperatures (77 K),
whereas previous values of TC required liquid 4He (4 K). A gallon of liquid nitrogen costs
about the same as a gallon of milk while a gallon of liquid helium is the price of vodka.
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So liquid nitrogen is much cheaper. So technological applications of superconductors
would be more economically feasible with the high temperature superconductors. Other
copper oxide superconductors have been found. Most notably Bi2Sr2CaCu2O8 (BSCCO,
TC ∼ 110 K) is often studied experimentally. Tl2Ba2Ca2Cu3O10 has TC ∼ 125 K and
HgBa2Ca2Cu3O8+δ has TC ∼ 133 K and under 30 GPa of pressure, its TC ∼ 164 K.

The basis of the high temperature superconductors are copper–oxygen planes. These
planes are separated from other copper oxide planes by junk. The properties of the hiTc
compounds are highly anisotropic. The conductivity in the planes is much higher than
between the planes. The superconducting current flows more easily in the planes than
between the planes.
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Josephson Effect
Brian Josephson came up with idea for the Josephson effect while he was still a

graduate student at Cambridge. It is one of those rare instances when theory predicted
a completely new phenomenon and experiment later confirmed it. Usually experiment
comes first and then the theorists figure it out. The Josephson effect is a remarkable
consequence of the rigidity in phase of the superconducting wavefunction. If we put two
superconductors next to each other separated by a thin insulating layer, the phase differ-
ence (θ2 − θ1) between the two superconductors will cause a current of superconducting
Cooper pairs to flow between the superconductors. This is Josephson tunneling and the
tunnel junction is called a Josephson junction or weak link. The effects of pair tunneling
include the DC Josephson effect and the AC Josephson effect.
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In the DC Josephson effect a DC current flows across the junction in the absence of
any electric or magnetic field. Let ψ1 be the superconducting order parameter on side 1:

ψ1 =
√
n1e

iθ1 (18)
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n1 is the density of superconducting pairs on side 1. Similarly

ψ2 =
√
n2e

iθ2 (19)

Assume that the superconductors are identical. Applying Schrodinger’s equation

ih̄
∂ψ

∂t
= Hψ (20)

yields

ih̄
∂ψ1

∂t
= h̄Tψ2 ih̄

∂ψ2

∂t
= h̄Tψ1 (21)

Here h̄T represents the tunneling matrix element between the superconductors on the 2
sides. It represents the amplitude for a superconducting pair on one side to hop to the
other side. T has units of frequency or rate. Plugging ψ1 =

√
n1e

iθ1 and ψ2 =
√
n2e

iθ2

into (21), we get
∂ψ1

∂t
=

1

2
√
n1

eiθ1
∂n1

∂t
+ iψ1

∂θ1

∂t
= −iTψ2 (22)

Multiply through by ψ∗

1 =
√
n1e

−iθ1 . Let δ = θ2 − θ1.

1

2

∂n1

∂t
+ in1

∂θ1

∂t
= −iT√n1n2e

iδ (23)

Take the real and imaginary parts

∂n1

∂t
= 2T

√
n1n2 sin δ

∂θ1

∂t
= −T

√

n2

n1

cos δ (24)

Similarly the equation for ∂ψ2

∂t
yields

∂n2

∂t
= −2T

√
n1n2 sin δ

∂θ2

∂t
= −T

√

n1

n2

cos δ (25)

The current J flowing from side 1 to side 2 is proportional to ∂n2

∂t
, or equivalently, to

−∂n1

∂t
. Thus

J = JC sin δ = JC sin(θ2 − θ1) (26)

Thus the phase difference between the superconductors leads to current flow. Current
flows without batteries or a power supply attached! JC is the maximum zero voltage
current that can be passed by the junction.
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