
Rubber band or Polymer

Let us chose the extensive coordinates of the system:

- Internal energy U, is always a coordinate

- Length of the rubber band L

wall
Tension force Γ

L

If we are not going to bend or twist the rubber band, we have enough 

coordinates to find the equilibrium state of the rubber band.

The fundamental relation will have a form: S(U,L)

rubber band

This example will show spectacular macroscopic manifestations of entropy –

elasticity of an ideal rubber band is not due to “elastic energy” but is due to entropy!

Notes



Experimental observations:

1. Energy of the rubber band in equilibrium with the environment is independent 

on the length of the rubber band and is proportional to temperature:
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where L0 is the equilibrium length (constant)
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2. Tension Γ is proportional to change in length: 
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The differential form of the fundamental relation is: 
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Since mixed second partial derivatives of S must be equal:
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Differentiability condition: Equations of state:
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Now we can substitute the equations of state into the differential for dS:
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We see that entropy decreases with increasing length of the rubber band 

(polymer chain). Therefore, the tendency of the rubber band to shrink is 

driven not by minimizing elastic energy (in our model there is no elastic 

energy) but by maximizing entropy

Notes



Polymer : microscopic model

A model polymer consists of monomers that are connected by rigid rods. The 

monomers are can rotate with respect to each other at zero energy cost. This is 

why the energy does not depend on the macroscopic length of the polymer.

L – macroscopic length of a polymer chain

N = 7 monomers
θi

U does not 

depend on θi

Notes



Polymer : microscopic model

We will examine a toy model of 2D polymer where monomers sit on a square lattice

N = 7

L = 4

Number of monomers, N, is fixed

Polymer length, L, 

is not constrained

Notes



Polymer: microscopic model

L = 6

Single microstate

Straight chain

L = 4

Single kink

Number of microstates 

(assuming monomers cannot 

occupy the same volume):

8+6+4+2 = 20

The number of microstates rises dramatically with decreasing length, so the 

entropy increases with decreasing length. State with L = 0 has the highest entropy.
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Let us check that the fundamental relation we derived indeed satisfies the Euler 

equation:
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Note that is it important to keep the chemical potential term in the Euler 

equation even though we are not changing the mole number of rubber in this 

problem. You get a wrong answer if you set the chemical potential to zero!

(for simplicity we assume that unit length of the rubber band is one mole)
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Euler equation

To obtain the value of µ/T, we can use the Gibbs-Duhem relation:
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Dividing by L0 and using the equations of state:
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So, the chemical potential of a rubber band is not zero!

Notes
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Substituting T, Γ and µ into the Euler equation:

We obtain:
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This expression is identical to the one we 

obtained by integrating the differential of dS.

Notes


