
Van der Waals Fluid – Deriving the Fundamental Relation 

How do we integrate the differential above to get the fundamental relation? 
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Naïve approach:  term-by-term “integration”: 

After integration: 
- Wrong answer! This is because 
we treated variables as constants 

Pitfalls of Integration of Functions of Multiple Variables 



Pitfalls of Integration of Functions of Multiple Variables 
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The correct way of integrating ds (note that although it works for the particular 
example of Van der Waals fluid, it is not generally applicable): 

Now we have functions of the same arguments as differentials. Now integration 
is legitimate: 



General Method of Integration 

Problem: We have a differential form: 

We also know that this form is an exact differential of a function s(u,v): 

where 

We can do “partial” integration of a differential equation above (assuming v is constant): 

Note that the “constant” of integration must depend on v for the above 
procedure to be correct 



General Method of Integration 

4. Integrating both sides with respect to v, we obtain C(v) 

1. “Partial” integration in u 

2. Partial derivative in v 

3. Substitution of  N(u,v) for 

The procedure above looks like a case of circular logic, but it always works 

S
te

p 
5 

S
ub

st
itu

te
 C

(v
) 



General Method of Integration Applied to VdW Fluid 

Let us apply the 5-step algorithm described above to the case of VdW fluid 

1. “Partial” integration in u (                                                       ) 



General Method of Integration Applied to VdW Fluid 

2. Partial derivative in v 

3. Substitution of  N(u,v) for 



General Method of Integration Applied to VdW Fluid 

4. Integration of both sides with respect to v, we obtain C(v) 

5. Substitution of C(v) back into the expression for s(u,v) 



Rubber Band or Polymer 

Let us chose the extensive coordinates of the system: 

-  Internal energy U, is always a coordinate 
-  Length of the rubber band L 

wall 
Tension force Γ 

L 

If we are not going to bend or twist the rubber band, we have enough 
coordinates to find the equilibrium state of the rubber band. 

The fundamental relation will have a form: S(U,L) 

rubber band 

This example will show spectacular macroscopic manifestations of entropy – 
elasticity of an ideal rubber band is not due to “elastic energy” but is due to entropy! 



Experimental observations: 

1. Energy of the rubber band in equilibrium with the environment is independent 
of the length of the rubber band and is proportional to temperature: 

where L0 is the equilibrium length (constant) 

Rubber band or Polymer 

2. Tension Γ  is proportional to change in length:  

- second experimental “equation of state” 

- first experimental “equation of state” 

Hooke’s law 

3. Tension increases with increasing T for fixed length L. 



The differential form of the fundamental relation is:  

Since mixed second partial derivatives of S must be equal: 

Rubber band or Polymer 



Rubber band or Polymer 

where B is a constant 

Differentiability condition: Equations of state: 



Rubber band or Polymer 

Now we can substitute the equations of state into the differential for dS: 

Integrating, we obtain: 

We see that entropy decreases with increasing length of the rubber band 
(polymer chain). Therefore, the tendency of the rubber band to shrink is 
driven not by minimizing elastic energy (in our model there is no elastic 
energy) but by maximizing entropy 



Polymer : microscopic model 

A model polymer consists of monomers that are connected by rigid rods. The 
monomers are can rotate with respect to each other at zero energy cost. This is 
why the energy does not depend on the macroscopic length of the polymer. 

L – macroscopic length of a polymer chain 

N = 7 monomers 
θi U does not 

depend on θi 



Polymer : microscopic model 

We will examine a toy model of 2D polymer where monomers sit on a square lattice 

N = 7 

L = 4 

Number of monomers, N, is fixed 

Polymer length, L,  
is not constrained 



Polymer: microscopic model 

L = 6 
Single microstate Ω = 1 
S ~ ln(Ω)=0 

Straight chain 
L = 4 

Single kink 

Number of microstates 
(assuming monomers cannot 
occupy the same volume): 
Ω = 8+6+4+2 ?  
S ~ ln(Ω) > 0 

The number of microstates rises dramatically with decreasing length, so the 
entropy increases with decreasing length. State with L = 0 has the highest entropy. 

These states have the sam
e energy 


