
Important Points from the Previous Lecture  

The fundamental relation can be written as the Euler equation: 

U = TS – PV + µ1N1+…+ µmNm 

We derived the Gibbs-Duhem relation: 

SdT −VdP + N1dµ1 + ... = 0

From the Gibbs-Duhem relation and the equations of state for an ideal gas, we 
obtained the fundamental relation for an ideal gas: 



Important Points from the Previous Lecture  

Two methods of reconstruction of the fundamental relation 

1. Equations  
of state, e.g. 

T(U,V,N) 

Gibbs-Duhem 
gives 

µ(U,V,N) 

Substitution  
into the 

Euler equation 

Fundamental 
relation 

2. If there is no need to derive an explicit expression for the chemical potential µ, 
    then the following expression for the molar entropy s can be integrated directly 
    to obtain the fundamental relation in the entropy representation (its molar form)  

This expression 
is based on: 



Ideal Gas Mixtures – the Entropy of Mixing 

Consider an example: two types of ideal gas, A and B, are initially 
separated by an impermeable diathermal partition. We also assume that 
pressure in the left and right compartments are the same. 

A B 

Then, a hole is created in the partition, and the gases intermix  

A+B A+B 
Question: What is the change 
of entropy in the mixing 
process? 

T1=T2 1 2 

1 2 

V0=V1+V2 

P1=P2 



Ideal Gas Mixtures – the Entropy of Mixing 

Before Mixing 

After Mixing 

 Change of entropy 



Ideal Gas Mixtures – the Entropy of Mixing 

Using an “equation of state” of the ideal gas: PV = NRT and PA=PB=PA+B 

We obtain: where 

SM is called the entropy of mixing. 
Entropy increases upon mixing. 



Ideal Gas Mixtures – the Entropy of Mixing 

For a multi-component ideal gas, the entropy of mixing is: 

S = N*ln(U)-ΣNi*ln(Ni/N) 

Recall the example of a chemical reaction in an ideal gas. The fundamental relation 
we considered in that example had a term proportional to the entropy of mixing. 

This term was important as it influenced the equilibrium mole numbers in the reaction. 
Since there was no energy cost associated with the reaction (note that all energy is 
kinetic in this example), this example shows that chemical reactions (and other 
processes) can be driven not only but internal energy costs but also by entropy! 



Van Der Waals Fluid 

Ideal Van der Waals fluid is described by the following equation of state:  

where R is the universal gas constant R = NAkB 

a and b are material-specific constants, v is molar volume 



Van Der Waals Fluid - Motivation 

Assumptions:  

-  Each mole of fluid occupies effective volume of b/NA 

-  There are weak attractive forces among the gas particles which lead to a 
decrease of pressure exerted by the particles on the walls of the gas container 
(the second term in the equation arises from these weak attractive force, called 
the Van der Waals force). 

Van der Waals forces are electrostatic in nature and arise due to dipole-dipole 
interactions between particles 



Van der Waals Fluid – Dipolar Forces 

- neutral molecule with zero electric dipole moment 

+ _ - due to charge fluctuations inside the molecule, electric dipole 
moment is induced 

- both direction and magnitude of the dipole moment fluctuate in time 

+ _ - The dipole generates electric field that polarizes (induces 
electric dipole moments) molecules around it 



The pictures above show a couple of examples of polarization induced by 
molecule 1 in molecule 2 for two different positions of molecule 2 with respect 
to the direction of the dipole moment of molecule 1 

Note in both cases the electrostatic energy of interaction of the four electric 
charges shown is negative. This means that the electrostatic forces acting 
between molecules are attractive. 

Van der Waals Fluid – Dipolar Forces are Attractive 

+ _ + _ + _ + _ 



Van der Waals Fluid – Pressure Reduction 

In the absence of inter-molecular attractive forces (e. g. ideal 
gas case), the pressure acting on the wall is P0. 

For ideal gas, P = n R T, where n = N/V=1/v is the particle 
density, P0 ~ n. 

Pressure is force per area, so P0 ~ n F, where F is the average 
force exerted by a individual gas molecule on the wall. 

Consider a molecule near the wall. The attractive force fm 
acting on it from other gas molecules pulls it away from the 
wall. This attractive force is proportional to the number of 
molecules in some effective volume, Veff ,so  fm = an (a=const). 

Therefore, the force per molecule acting on the wall is now    
F – fm= F- a n, and pressure is P ~ n (F – fm) = P0 – a n2. Container wall 

Veff 



Van der Waals Fluid –Origin of Pressure Reduction 

Now, since  P ~ n (F – fm) =P0 – a n2 = P0 – a (1/v)2. 

This is almost the same as the VdW “equation of state”:  

The equation   P = P0 – a (1/v)2 becomes the VdW equation of 
state if we start with the ideal gas expression for P0: 

and use the fact that molecules have finite volume: v  (v-b). 



Van der Waals Fluid – Two Equations of State 

One “equation of state” is: Another equation of state is of the form: 

We can solve this problem in the same way as the ideal gas problem. 

The fundamental relation can be obtained by integration of: 



Van der Waals Fluid –Equations of State are not Independent 

To guess the right form of the second equation of state, let us use the 
theorem of differential analysis that the mixed second-order derivatives of a 
differentiable function should be equal:  



This can be rewritten as: 

Van der Waals Fluid –Equations of State are not Independent 



Van der Waals Fluid – the Second Equation of State 

The simplest function satisfying the above condition is (1/v+u/a) 
Any function 1/T=f(1/v+u/a) satisfies the above differential equation 

By analogy with the equation of state of ideal gas: 1/T=cR/u, we write: 



Van der Waals Fluid – the Equations of State 

One equation of state is: Another equation of state is of the form: 

The fundamental relation can be obtained by integration of: 



Van der Waals Fluid - the Fundamental Relation 

or: 

You can check that the expression for s below satisfies the equation for ds above: 

The actual integration are not trivial (but not too difficult) and we will discuss the 
general rules for such integration in the next lecture. 



Van Der Waals Fluid – Physical Interpretation of Entropy 

Decrease of entropy because fewer 
position states are available (in VdW fluid 
particles cannot occupy the same space) 

Increase of entropy because more 
velocity states are available for the 
same internal energy due to attractive 
interactions among particles. Why? 

In ideal gas, each particle can have velocity from zero to   

In VdW fluid, each particle can have velocity from zero to ~   

Therefore, the number of velocity states is larger in VdW fluid than in ideal gas  

U = Pure kinetic energy 



Van der Waals 

VdW model was developed in the 1870th 

It had great success in qualitative 
description of real gases, including liquid-
gas phase transitions 

In his Nobel lecture in 1910 he emphasized 
that his theory must be successful because 
of the atomistic nature of matter. 

Even in 1910 atoms were not yet widely 
recognized as being real! 


