
The Euler Equation 

Using the additive property of the internal energy U, we can derive a useful 
thermodynamic relation – the Euler equation. 

Let us differentiate this “extensivity condition” with respect to λ:  
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The Euler Equation 

Setting λ=1 in the above equation, we obtain:  

Using the definition of the intensive parameters, we arrive at the Euler equation: 

U = TS – PV + µ1N1+…+ µmNm 
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The Gibbs-Duhem Relation 

Extensive thermodynamic coordinates (U, S, V, N …) are related to each other 
by the fundamental relation: 

It turns out that intensive coordinates (whose number is one less than the number of 
extensive coordinates counting U) are also not all independent from each other. 
The first differential of the Euler equation (according to the rules of calculus):   

we obtain: 

U = TS – PV + µ1N1+…+ µmNm 

Euler equation form of the fundamental relation 



The Gibbs-Duhem Relation 

Now, if we subtract the most general form of the first differential of the 
fundamental relation U(S,V,…) from the expression above: 
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dU = TdS − PdV + µ1dN1 + ...
we derive the Gibbs-Duhem relation: 

SdT −VdP + N1dµ1 + ... = 0



Thermodynamic degrees of freedom 

Independent intensive thermodynamic coordinates are called 
thermodynamic degrees of freedom.  

For example, for a single-component gas with three intensive 
coordinates T, P and µ,  the number of thermodynamic degrees of 
freedom is two due to the Gibbs-Duhem relation: 

The Gibbs-Duhem relation reduced the number of thermodynamic degrees of 
freedom by one (from the total number of intensive coordinates).  



Thermodynamic degrees of freedom 

If S, V and N are known as functions of T and P, integration of the 
Gibbs-Duhem relation will give µ(T,P) as a function of T and P. 

The idea is that in intensive coordinates, the size of the system is not important (if 
you know thermodynamic properties of one mole of gas, you know properties of 
this gas). Excluding the size of the system from consideration reduces the number 
of degrees of freedom by one. 

- molar quantities, independent on N 



Motivation for Gibbs-Duhem Relation in the Entropy Representation 

-  Both the Euler equation and the Gibbs-Duhem relation in the energy 
representation employ S, V and N as thermodynamic coordinates.  

-  But S is not directly measurable in experiment. 

- This is why it is useful to write the Euler equation and the Gibbs-Duhem relation in 
the entropy representation (where the coordinates are U, V and N are measurable).  



Gibbs-Duhem Relation in the Entropy Representation 

Now, differentiating the Euler equation in the entropy representation: 

and subtracting the differential dS:  

we obtain the Gibbs-Duhem relation in the entropy representation: 

The independent variables in the above expression are U, V and N.  
U is easier to measure than S. 



Molar parameters 

Sometimes it is convenient to work with molar parameters: 

- molar entropy - molar energy - molar volume 

Molar Euler equation 

Molar Gibbs-Duhem relation 



Advantages of using the molar parameters 

Molar parameter allow us to reduce the number of independent variables in the 
fundamental relation by one due to the fact that entropy and energy are 
extensive parameters 

We can now write molar entropy as: 

We see that molar entropy is only a function of two variables – 
molar energy and molar volume 



Ideal Gas 

An idealized model of non-interacting gas is called an “ideal gas” if it 
satisfies the following two equations: 

We can rewrite this equations as true equations of state in the entropy representation: 

Here R is the universal gas constant, R =NA kB and c is a constant. 
c = (number of degrees of freedom)/2 



Ideal Gas 

We substitute these equations into the Gibbs-Duhem relation in the entropy 
representation: 



Ideal Gas 

Dividing the Gibbs-Duhem relation by N, we obtain: 

Substituting the equations of state: 



Ideal Gas 

Integrating: 

This is third equation of state. 



Ideal Gas 

Now we can substitute all three equations of state into the molar form of the 
Euler equation in the entropy representation : 
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to obtain the fundamental relation 

Note that this equation does not work at small u and v since s becomes negative 



Ideal Gas: Alternative Method 

We can use the fact that entropy is an extensive coordinate: 

S = S (U,V,N) = NS(U/N,V/N,1) = Ns(u,v) s = S/N = s(u,v) 

Therefore: 

This expression can be directly integrated to give: 

or 


