
Pressure  

dS = (1/T) dU + (P/T) dV – (µ1/T) dN + … 

If matter cannot flow between the system and its environment 
but the volume of the system is unconstrained, then variation of 
the total entropy of the system of interest and its environment 
can be written as: 

dS = (1/T1) dU1 + (P1/T1) dV1 + (1/Te) dUe + (Pe/Te) dVe  



Since both the total internal energy U = U1 + Ue and the total volume V = V1 + Ve 
of the system plus its environment are conserved: 

dUe = - dU1 dVe = - dV1 

dS = (1/T1 – 1/Te) * dU1 + (P1/T1 - Pe/Te )* dV1  

In equilibrium, dS = 0 for arbitrary dU1 and dV1 , so T1 = Te  as well as P1 = Pe  

Pressure  

dS = 1/T1 * dU1 + P1/T1 * dV1 + 1/Te* dUe + Pe/Te * dVe  



Electrochemical Potential  

dS = 1/T * dU + P/T * dV - µ1/T * dN + … 

If volume of a system is fixed but particles of one kind can flow between 
the system and its environment, then variation of the total entropy of the 
system of interest and its environment can be written as: 

dS = (1/T1) dU1 – (µ1/T1) dN1 + (1/Te) dUe – (µe/Te)  dNe  



Electrochemical Potential  

Since both the total internal energy U = U1 + Ue and the total number of particles 
N = N1 + Ne of the system plus its environment are conserved: 

dUe = - dU1 dNe = - dN1 

dS = (1/T1 – 1/Te) * dU1 – (µ1/T1 - µe/Te )* dN1  

In equilibrium, dS = 0 for arbitrary dU1 and dN1 , so T1 = Te  as well as µ1 = µe  

Exercise: show that matter flows from high chemical potential to low chemical potential. 

dS = 1/T1 * dU1 - µ1/T1 * dN1 + 1/Te* dUe - µe/Te * dNe  



Chemical Equilibrium  

A chemical reaction:     2 * H2 + O2  2 * H2O                    or   
                                      2 * H2  + 1 * O2 - 2 * H2O  0 

ν1 * A1 + ν2 * A2 + ν3 * A3  0 Any generic 3-component reaction : 

Any reaction : Σνj * Aj  0 

Here Aj stands for any chemical substance and νj are stoichiometric coefficients 
determined from the condition of conservation of atoms of a given type in a reaction. 



The final products of a chemical reaction must be in equilibrium.  

If we consider a closed isolated system of fixed volume and internal energy, then 
there is no interaction with the environment.  

Since the environment is absent, the entropy of the system alone has to be 
maximum in equilibrium with respect to its internal unconstrained coordinates (N1, 
N2 … ). The system is its own environment in this case: 

dS = 1/T * dU + P/T * dV - µ1/T * dN1 + … dS = - µ1/T * dN1 - µ2/T * dN2 … 

Chemical Equilibrium  

dV =0    dU = 0 



Chemical Equilibrium 

In equilibrium, dS = 0, therefore: dS = - Σ µj/T * dNj = 0 
Conservation of the total number of each atomic  
species in chemical reactions demands:  

dNj = νj*dN 

where dN is some number that is the same for all chemical components 
of the reaction (characterizes the extent of the reaction) 

dS = - Σ νj*µj/T * dN = 0 Σ νj*µj= 0 

Therefore, not all chemical potentials are independent from each other 
in a chemical reaction. 



Chemical Equilibrium: Example 

Let us consider a chemical reaction of the form:  2A+B  C, where C = A2B 

Let us assume that we know the fundamental relation for this system in the entropy 
representation (this is a highly idealized example but illustrates the method): 

S = N*ln(U) - ΣNi*ln(Ni/N) 

Initial conditions: NA0=2, NB0=1, NC0=0, T = T0 

Questions:  

What are the mole numbers of A, B and C in equilibrium? 
What is the temperature of the system in equilibrium? 
What is the temperature change of the system after completion of the reaction? 

where: N = NA+NB+NC, Ni = (NA,NB,NC) Entropy of mixing 

Here U is dimensionless 
for simplicity 



Chemical Equilibrium: Example 

Note that this idealized example reaction is done under conditions of 
constant volume and constant total energy. In usual chemical 
reactions pressure and temperature are held constant – we will study 
these types of reactions later. 

dS = 1/T * dU + P/T * dV - µA/T * dNA - µB/T * dNB-...  

1
T

= ∂S
∂U( )

NA ,NB ,NC
=
N
U

S = N*ln(U)-ΣNi*ln(Ni/N) 



µ = −T ∂S
∂N( )

U ,V

Chemical Equilibrium: Example 

dS = 1/T * dU + P/T * dV - µA/T * dNA - µB/T * dNB-...  

S = N*ln(U)-ΣNi*ln(Ni/N) 

Show this  
(good math exercise) 

Definition of 
chemical potential 



Chemical Equilibrium: Example 

From the chemical equilibrium relation  Σ νj*µj= 0 we derive: 

Conservation of atomic species gives: 

NA+2*NC= 2 =const NB+NC= 1 =const 

These three equations along with the initial conditions for the mole numbers 
can be solved to give the equilibrium mole numbers NA, NB and NC. 



Chemical Equilibrium: Example 

ν iµi
i
∑ = −

2U
N
ln U( ) + U

N
ln NA

2NB

NCN
2

⎛
⎝⎜

⎞
⎠⎟
= 0

ln 4(1− NC )
3

NC 3− 2NC( )2
⎛

⎝
⎜

⎞

⎠
⎟ = 2 ln U( )

4(1− NC )
3

NC 3− 2NC( )2U 2
= 1

Eliminating NA and NB 



Chemical Equilibrium: Example 

Example: U = Exp(9) 

NC=0.263 NA=1.474 NB=0.737 

4(1− NC )
3

NC 3− 2NC( )2U 2
= 1

1 
Let us graphically solve the 
chemical equilibrium condition: 

4(1− NC )
3

NC 3− 2NC( )2U 2



Chemical Equilibrium: Example 

Let us now find the temperature of the system  
before and after the chemical reaction 

Initial temperature:  

Final temperature:  

Temperature of the system increased in the reaction 

The chemical equilibrium condition  Σ νj*µj= 0 allowed us to find the final reaction 
products and the variation of temperature in a chemical reaction. 



The Euler Equation 

Using the additive property of the internal energy U, we can derive a useful 
thermodynamic relation – the Euler equation. 

Let us differentiate this “extensivity condition” with respect to λ:  

∂U(λ ⋅S,...)
∂(λ ⋅S)

⋅
∂ λS( )
∂λ

+
∂U(λ ⋅S,...)
∂(λ ⋅V )

⋅
∂ λV( )
∂λ

+
∂U(λ ⋅N1,...)
∂(λ ⋅N1)

⋅
∂ λN1( )
∂λ

+ ...+ ∂U(λ ⋅Nm ,...)
∂(λ ⋅Nm )

⋅
∂ λNm( )

∂λ
=U(S,V ,N1,...Nm )



The Euler Equation 

Setting λ=1 in the above equation, we obtain:  

Using the definition of the intensive parameters, we arrive at the Euler equation: 

U = TS – PV + µ1N1+…+ µmNm 

∂U(λ ⋅S,...)
∂(λ ⋅S)

⋅S + ∂U(λ ⋅S,...)
∂(λ ⋅V )

⋅V +
∂U(λ ⋅N1,...)
∂(λ ⋅N1)

⋅N1 + ...+
∂U(λ ⋅Nm ,...)
∂(λ ⋅Nm )

⋅Nm =U(S,V ,N1,...Nm )



The Gibbs-Duhem Relation 

Extensive thermodynamic coordinates (U, S, V, N …) are related to each other 
by the fundamental relation: 

It turns out that intensive coordinates (whose number is one less than the number of 
extensive coordinates counting U) are also not all independent from each other. 
The first differential of the Euler equation (according to the rules of calculus):   

we obtain: 

U = TS – PV + µ1N1+…+ µmNm 

Euler equation form of the fundamental relation 



The Gibbs-Duhem Relation 

Now, if we subtract the most general form of the first differential of the 
fundamental relation U(S,V,…) from the expression above: 

dU =
∂U
∂S

⎛
⎝⎜

⎞
⎠⎟V ,N1 ,...

dS + ∂U
∂V

⎛
⎝⎜

⎞
⎠⎟ S ,N1 ,...

dV +
∂U
∂N1

⎛
⎝⎜

⎞
⎠⎟ S ,V ,N1 ,...

dN1 + ...

dU = TdS − PdV + µ1dN1 + ...
we derive the Gibbs-Duhem relation: 


