
Properties of Entropy  

Due to its additivity, entropy is a homogeneous function of the extensive 
coordinates of the system:  

S(λU, λV, λN1,…, λNm) = λ S (U, V, N1,…, Nm)  

This means we can write the entropy as a function of the total 
number of particles and of intensive coordinates: mole fractions 
and molar volume 

N S(u, v, n1,…, nm) =  S (U, V, N1,…, Nm)  

If λ = 1/N 

Σni=1 



Intensive Thermodynamic Coordinates 

U = U(S, V, N1, … ,Nm ) 

The fundamental relation in the energy representation gives the internal energy of 
the system as a function of all extensive coordinates (including the entropy)  

dU = (∂U/∂S)V,N1,…Nm dS + (∂U/∂V)S,N1,…Nm dV + (∂U/∂N1)S,V,N2,…,Nm dN1 + … 

Since the internal energy is a function of the state of the system, we can write 
its first differential as: 

The partial derivatives in this differential are functions of the same extensive 
parameters as the internal energy. 



New Intensive Thermodynamic Variables  

It is convenient to give names to these partial derivatives: 

(∂U/∂S)V,N1,…Nm = T,        temperature 

- (∂U/∂V)S,N1,…Nm = P,      pressure 

dU = T dS – P dV + µ1 dN1 + … 

(∂U/∂N1)V,S, N2,…Nm = µ1     electrochemical potential 

dU = (∂U/∂S)V,N1,…Nm dS + (∂U/∂V)S,N1,…Nm dV + (∂U/∂N1)S,V,N2,…,Nm dN1 + … 

We will show that the properties of the above defined variables coincide with our 
intuitive understanding of temperature, pressure and chemical potential  

dS = (1/T) dU + (P/T) dV – (µ1/T) dN1 + … 



Relation between Entropy and Heat  

dU = T dS – P dV 

If the number of particles is constrained in a given process (dN = 0): 

On the other hand, we have conservation of energy: 

dU = δW + δQ  

Since work is: δW = - P dV, we find the connection between heat and entropy: 

δQ = T dS 

Flux of heat into the system increases its entropy. 



Equations of State  

The intensive parameters we just introduced written as 
functions of the extensive parameters are called the 
equations of state: 

T = T(S, V, N1, … ,Nm ) 

P = P(S, V, N1, … ,Nm ) 

µi = µi(S, V, N1, … ,Nm ) 



A full set of the equations of state carries the same 
information about a thermodynamic system as the 
fundamental relation.  

If experimentally determined, the equations of state can be 
used to reconstruct the functional form of the fundamental 
relation by integration of dU or dS. We will consider a few 
examples of such constructions. 

The equations of state connect coordinates of thermodynamic 
systems to each other.  

This means that not all thermodynamic coordinates are 
independent! 

Equations of State  



Temperature  

In equilibrium, the entropy of the system + its environment has a maximum as a 
function of all unconstrained coordinates of the system and environment, therefore 

dS = dS1 + dSe = 0 for variations of any unconstrained  
extensive coordinate in equilibrium. 

Let us consider variation of the internal energy U of the system and its environment 
(a situation when only U is unconstrained): 

dS = (∂S/∂U1)V,N1…Nm dU1 + (∂S/∂Ue)V,N1,…Nm dUe = 0  

dS = 1/T1 *dU1 + 1/Te *dUe = 0  Or, using the definition of temperature: 



Temperature  

Using the fact that the total energy of the composite isolated super-system  
U = U1 + Ue is conserved: 

dU = dU1 + dUe = 0 dU1 = - dUe 

We obtain:  dS = (1/T1 – 1/Te) dU1 = 0 T1 = Te 

Temperatures of the system and its environment are the same if U is unconstrained ! 

(since dU1 ≠ 0) 

dS = 1/T1 *dU1 + 1/Te *dUe = 0  



Temperature difference and the direction of heat flow 

Let us consider a system initially adiabatically insulated from the environment. 
Temperatures of the system and environment can be initially different T1 > Te. 

If we remove the adiabatic constraint, energy will 
flow between the system and its environment and 
the entropy will increase in the new equilibrium 
state (find a new maximum): dS > 0 (Postulate II). 

dS = (1/T1 – 1/Te) *dU1 > 0 

Since T1 > Te, dU1 < 0. Therefore, heat will flow from the hot to the cold 
system. This is consistent with our intuitive notion of temperature. 
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Temperature : Units 

Since S is a monotonically increasing function of U (Postulate III),  
temperature T = (∂U/∂S) V,N1,…Nm  is never negative. 

Postulate IV also tells us that at zero temperature, entropy is zero, so zero 
temperature is in principle possible. 

Therefore, the minimum possible temperature in thermodynamics is 
zero. 

Thus, any temperature scale that uses negative temperatures 
cannot serve as a thermodynamic temperature scale 

The thermodynamic, absolute (Kelvin) temperature scale has T =0 when S = 0. 
The unit of the temperature scale is Kelvin. 



The absolute (Kelvin) temperature 
scale is based on assigning a 
definite value of T to the triple point 
for water (at T=273.16K and P = 
611.73Pa water can coexist in the 
solid, liquid, and gas forms in 
equilibrium).  

The triple point of water is 
unique, and has a unique 
temperature T = 273.16K. 

The Absolute Temperature Scale 



Since δQ = TdS, the product of entropy and temperature should have the 
dimensions of energy. 

-  Since entropy is just the logarithm of the number of microscopic states, it is 
natural to make it a dimensionless quantity 

-  In this case, temperature should have units of energy 

-  A thermodynamic unit for temperature is Kelvin (K). Kelvins can be converted 
into Joules via the Boltzmann constant: E = kBT (kB = 1.38 10-23 J/K). It would be 
great if temperature was measured in yoctoJoules (1 yJ = 10-24 J = 13.8 K). 

-  SI defines temperature to be 273.16 K at the equilibrium state of ice, water and 
water vapor coexistence. 

Temperature and Entropy: Units 


