
The Postulates  
Equilibrium states of a macroscopic system are completely 
described by the values of its extensive coordinates (U, V, 
N1 … Nm, …). 

The entropy is extensive. It is a continuous, differentiable and 
monotonically increasing function of the internal energy. 

S = 0 if (∂U/∂S)V,N1…Nm = 0. 

+ the conservation of energy:  dU = δW + δQ  

There exists a function of the extensive coordinates of a 
macroscopic system and its environment (called the entropy S) 
that is maximized by the equilibrium values of unconstrained 
extensive coordinates.  



Entropy of a system and its environment  

On one hand, entropy is a maximum in equilibrium. On the other hand, 
entropy is a monotonically increasing function of the internal energy. 

Does not this mean that the internal energy should be infinite in 
equilibrium? No!  
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Since the composite system is 
isolated, its total internal 
energy is conserved:  U + Ue = 
U0 = const 
Therefore Ue = U0 – U. 

If the energy of the system of interest increases, its entropy also increases 
dU>0, dS>0 
At the same time the energy and the entropy of the environment decrease 
dUe<0, dSe<0 
Entropy of the isolated composite system has a maximum for fixed value of 
U0. 
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From Mechanics to Thermodynamics 

The recipe for reduction of microscopic mechanical coordinates to a 
single thermodynamic coordinate, entropy, is given by statistical 
mechanics: 

1.  Fix the values of all macroscopic thermodynamic coordinates U,V,
… 

2.  Determine the phase space volume Ω(U,V,…) of the microscopic 
coordinates  

3.  Calculate entropy as: S(U,V,…) = const*Log[Ω(U,V,…)] 

Quantum mechanics tells that the number of quantum states of a 
system is proportional to the volume of its phase space nstates = Ω/
h3N, so S ~ Ln(nstates) 
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-  The number of microscopic states of the system + 
environment as a function of extensive coordinates 
of the system of interest exhibits a sharp peak 

-  Basic postulate of statistical physics: An isolated 
system is equally likely to be in any of its accessible 
microstates. 

-  Since the peak is very sharp, the probability of 
finding the system very close to the peak position is 
very close to unity and one can introduce a well-
defined value of the unconstrained coordinate in 
equilibrium 

Physical meaning of entropy: a detour to statistical physics  
Statistical mechanics results: 

Any extensive coordinate 



Entropy Example: Ideal Gas  

V1 = V2 

Constrained coordinate: V1 

Unconstrained coordinates: N1, U1 

U1 depends on velocities only 

N1 depends on coordinates only 

V1 V2 

N1 N2 = N - N1 
Particle conservation law 

System Environment 



Entropy Example: Ideal Gas  

For each given particle of gas, Γ/2  of its position states are in V1 and Γ/2 of its 
position states are in V2 independent on the particle velocity.  

We will group the position states of the composite system according to their 
value of N1 – the number of particles in the left compartment. N1 is an 
unconstrained macroscopic thermodynamic coordinate describing our system. 

If we can measure a coordinate of a particle with precision λ, then there are Γ 
= V/λ3 distinct position states for each particle of gas. 



Entropy Example: Ideal Gas  

Example: N = N1 + N2 = 4   

N1 = 0:     ( _ I 1,2,3,4 )  
N1 = 1:     ( 1 I 2,3,4 ), ( 2 I 1,3,4 ), ( 3 I 1,2,4 ), ( 4 I 1,2,3 ) 
N1 = 2:     ( 1,2 I 3,4 ), ( 1,3 I 2,4 ), ( 1,4 I 2,3 ), ( 2,3 I 1,4 ) , ( 2,4 I 1,3 ),  ( 3,4 I 1,2 )  
N1 = 3:     ( 2,3,4 I 1), ( 1,3,4 I 2), ( 1,2,4 I 3), ( 1,2,3 I 4) 
N1 = 4:     (1,2,3,4 I _ ) 

Macroscopic coordinate Microscopic states 

The number of microscopic realizations of the macroscopic state with a given value of N1 : 

1*(Γ/2)4 

4*(Γ/2)4 

6*(Γ/2)4 

4*(Γ/2)4 

1*(Γ/2)4 

Number of microscopic states 

N! 
N1! * (N-N1)! 

(Γ/2)N (binomial coefficient) 

Let us count microscopic states with a given value of N1 



Entropy Example: Ideal Gas  

N = 10 N = 100 

N = 1000 
Peak width ΔN1 ~ N1

1/2 

Relative peak width ΔN1/N1 ~ N1
-1/2 

For N ~ 1024, the relative peak 
width is one part per trillion 
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Entropy Example: Ideal Gas  

-  Similarly we can consider all possible 
velocity states for the particles and 
calculate the number of velocity 
microstates as a function of U1 

-  Since velocities and positions are 
independent from each other in ideal 
gas, the total number of microstates is 
just a product of the number of position 
and velocity microstates. 

It is important to realize that any microstate with any value of unconstrained parameters is 
realized in the system with equal probability. For example, a microstate with N1=0 and U1=0 
is realized with the same probability as a microstate with N1=N/2 and U1=U/2. 



Why Entropy of a Composite System has a Peak  

S1 

U1 

Se 
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U = U1 + Ue Ue = U - U1 

S1 + Se 

U1 U1 

S1 
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system environment 



Irreversibility in Thermodynamics  

A short description of thermodynamic processes:  
If a constraint between system and its environment is removed, entropy of the 
system + environment increases: dS = Sf - Si >0 (Postulate II). This is because by 
removing a constraint we have increased the volume of phase space that the 
microscopic coordinates of the system + environment can explore. 

This means that a process Si  Sf is allowed while the opposite process Sf  Si is 
prohibited because it decreases the entropy of the composite system.  

Thus irreversibility is inherent in thermodynamics. In mechanics, all processes are 
inherently reversible. In mechanics, it is sufficient to reverse all velocities to return to 
a state of the system in the past (essentially to go backwards in time). 



Origins of Irreversibility 

Origins of irreversibility: 
  - Dynamic origins (tell you why reversing velocities does not get you to the initial state) 
  - Kinematic origin (the most fundamental one) 

Dynamic origins: 

1.  Isolated macroscopic systems is an abstraction. A typical system  

       with 1023 atoms has quantum energy spacing of ~            Joules. 

 For comparison, gravitational (weakest) interaction energy between two 
electrons at the opposite ends of observable universe is ~ 10-98 Joules. 
So a system as small as 100 particles cannot be truly isolated. 

2.    Even if we neglect interactions with the rest of the world, there are still 
interactions with fluctuations of the physical vacuum which are random 
in nature. 



Kinematic Origin 
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States with U close to U0 

States with U far from U0 

The system evolves according to the reversible 
equations of mechanics. 

According to these equations, the system goes 
through states with different values of 
unconstrained coordinates (e. g. U). 

However, almost every time we look at the system 
(measure), we find it in a state with U close to U0 
because there are a lot of such states. 

S
s+

e 

U 

U0 

Initially prepared state 

Phase space 


