
Isotherms of liquid-gas phase transition
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From the stable isotherm shape it is clear that 

there is a continuous change of average molar 

volume across the phase transition. Molar 

entropy and internal energy also change across 

the phase transition.
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where vL and vG are molar volumes of liquid and 

gas and xL and xG are molar fractions of liquid and 

gas in the liquid/gas mixture. Solving for xL:
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Isotherms of liquid-gas phase transition
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Transformation from liquid to gas 

without a phase transition requires a 

process with pressures above the 

critical pressure.

There is only one phase of fluid above 

the critical pressure.

Notes



Phase Transitions in Helium

4He
3He

The vdW model of a fluid fails at low temperatures where interaction energy between 

atoms and molecules becomes comparable to temperature. 

- Quantum phases such as superfluid phases of He are not described (a fluid with 

zero viscosity)

Notes



Summary of phase transitions so far

- Entropy is discontinuous across the phase 

coexistence curve, e. g. molar entropies of liquid 

and gas phases at the same pressure and 

temperature are different. This also implies that a 

system undergoing a first order phase transition 

absorbs or emits heat at constant temperature 

(latent heat).

- Thermodynamically stable isotherms can be 

constructed from the unstable isotherms by using 

the fact the pressure and chemical potential remain 

constant across the phase transition
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First order phase transitions in multi-component systems

A two-component system where each of the components can be either solid or liquid. 

),,(
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LL
xPTµ - chemical potential of the first component in the liquid state
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SS
xPTµ - chemical potential of the first component in the solid state

- molar fraction of the first component in the liquid phase
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Two-phase, two-component system
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The liquid and solid phases do coexist at 

the point when chemical potentials of the 

two phases are equal to each other:
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Solving (1) and (2), we find
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For component 1:

A solution exists in a 2D region of 

the P-T phase diagram.

Notes



Three-phase, two-component system

Now assume that both components can exist in three phases: solid, liquid and gas
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Gas, liquid and solid for both phases coexist if:
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Note that these are four equations for three unknowns:
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Three-phase, two-component system

These are four equations for three unknowns:
S

x
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These means that three phases cannot coexist at arbitrary values of P and T. For

a given value of T, the above 4 equations give P, 
S

x
1
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Similarly, if four phases of a two-component system are possible, they can only 

coexist  at a uniquely defined point (or a few points) with given pressure and 

temperature.

Five phases cannot generally coexist in a two-component system.

Notes



Gibbs Phase Rule

For an arbitrary system with r components and M phases.

1-component system:

1 phase: exists at any T and P                                  2 degrees of freedom

2 phases: coexist on the coexistence curves T(P)                1 degree of freedom

3 phases: coexist at a single point Tt, Pt 0 degrees of freedom

2-component system:

2 phases: coexist in 2D regions of the T-P plane                      2 degrees of freedom

3 phases: coexist in 1D regions T(P) of the T-P plane              1 degree of freedom

4 phases: coexist at a finite set of points {Tq, Pq}                     0 degrees of freedom 

r-component system:

M phases: 2+r-M degrees of freedom
Notes



( )rxxPTgg ,...,,
1

=

: r+1 thermodynamic coordinates

M phases coexist: ( ) ( )rMr xxPTxxPT ,...,,...,...,,
111

µµ ==

: M-1 equations connecting thermodynamic coordinates

1...
1

=++ rxx

Therefore, there are r+1-(M-1) = 2+r-M independent thermodynamic coordinates 

in the regions of thermodynamic coordinate space where M phases coexist.

Gibbs Phase Rule

Gibbs phase rule: for r-component system, M phases can coexist in 2+r-M 

dimensional regions of the thermodynamic coordinate space.

Notes



Phase diagrams of binary systems

The molar Gibbs potential (chemical potential) for a binary system is a function 

of T, P and x1 – the mole fraction of the chemical component 1 of the system. 

It is convenient to represent the phase diagram of such a system on the T-

x1 plane at a fixed pressure.

Since the number of components r = 2 and the number of phases M = 2, 

liquid and gas phases can coexist in 2D regions of the thermodynamic 

coordinate space (2+r-M)=2

Behavior of mixtures of two types of substances is described by thermodynamics. 

The process is different from chemical reactions as no chemical transformations 

take place, but heat may be released and molar volumes may change upon mixing. 

Notes



Phase diagrams of binary systems

Phase diagram for a simple two-component 

liquid-gas system at P = const 
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Mixtures – the entropy of mixing

When considering thermodynamics of multi-components, it is important to take into 

account the entropy of mixing. If you have two types of molecules, then the state 

of them being intermixed has higher entropy than the state when they are not 

mixed:

S1 < S2

Notes



Mixtures – the entropy of mixing

( ) ( )[ ]xxxxNS ln1ln1 +−−−=∆

From statistical mechanical considerations 

(by counting the microstates), one can show 

that the entropy of mixing is given by:

Where x is the fraction of the molecules of 

one type in the binary mixture.
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Gibbs Potential of Mixtures

TSPVUG −+=

The Gibbs potential is:

Consider a process where we intermix two 

types of non-interacting molecules at constant 

pressure and volume. Non-interaction means 

that U does not change, so the change of G will 

only come from the –TS term:
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Note that the resulting shape of the Gibbs potential is stable against phase separation
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Gibbs Potential of Mixtures

Now let us consider an interesting case where there is a repulsive microscopic 

interaction between two types of molecules (e.g. water and any hydrophobic 

substance such as oil)

0>∆U

Now as two types of atoms intermix on the 

microscopic level, the internal energy U 

increases:

A typical variation is given by:
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STUG ∆−∆=∆

The variation of the Gibbs potential upon mixing is more complex:

Gibbs Potential of Mixtures
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Gibbs Potential of Mixtures

High temperature limit STSTUG ∆−≈∆−∆=∆
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The Gibbs potential is stable and mixture at any concentration is stable

Notes



Gibbs Potential of Mixtures

Low temperature limit STUG ∆−∆=∆
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The resulting form of the Gibbs potential is unstable and will phase separate 

for some values of x
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Phase Separation in Mixtures
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Separation onto phases will lower the average Gibbs energy and thus the 

equilibrium state is phase separated

Notes


