Isotherms of liquid-gas phase transition

From the stable isotherm shape it is clear that there is a continuous change of average molar volume across the phase transition. Molar entropy and internal energy also change across the phase transition.

\[v = x_L v_L + x_G v_G \quad x_L + x_G = 1 \]

where \(v_L \) and \(v_G \) are molar volumes of liquid and gas and \(x_L \) and \(x_G \) are molar fractions of liquid and gas in the liquid/gas mixture. Solving for \(x_L \):

\[x_L = \frac{v_G - v}{v_G - v_L} \]

\[x_G = \frac{v - v_L}{v_G - v_L} \]

\[x_L = \frac{CA}{BA} \quad x_G = \frac{BC}{BA} \quad - \text{“lever rule”} \]
Transformation from liquid to gas without a phase transition requires a process with pressures above the critical pressure.

There is only one phase of fluid above the critical pressure.
The vdW model of a fluid fails at low temperatures where interaction energy between atoms and molecules becomes comparable to temperature.

- Quantum phases such as superfluid phases of He are not described (a fluid with zero viscosity)
Summary of phase transitions so far

- Entropy is discontinuous across the phase coexistence curve, e.g. molar entropies of liquid and gas phases at the same pressure and temperature are different. This also implies that a system undergoing a first order phase transition absorbs or emits heat at constant temperature (latent heat).

- Thermodynamically stable isotherms can be constructed from the unstable isotherms by using the fact the pressure and chemical potential remain constant across the phase transition.

\[
dG = -SdT + VdP + \mu dN \quad \Rightarrow \quad S = -\left(\frac{\partial G}{\partial T}\right)_{P,N}
\]
First order phase transitions in multi-component systems

A two-component system where each of the components can be either solid or liquid.

\[\mu_1^L(T, P, x_1^L) \] - chemical potential of the first component in the liquid state

\[\mu_1^S(T, P, x_1^S) \] - chemical potential of the first component in the solid state

\[x_1^L \] - molar fraction of the first component in the liquid phase

\[x_1^S \] - molar fraction of the first component in the solid phase

\[x_1^L + x_2^L = 1 \]

\[x_1^S + x_2^S = 1 \]
Two-phase, two-component system

The liquid and solid phases do coexist at the point when chemical potentials of the two phases are equal to each other:

\[\mu_1^S(T, P, x_1^S) = \mu_1^L(T, P, x_1^L) \] \hfill (1)

\[\mu_2^S(T, P, x_2^S) = \mu_2^L(T, P, x_2^L) \]

\[\mu_2^S(T, P, 1 - x_1^S) = \mu_2^L(T, P, 1 - x_1^L) \] \hfill (2)

Solving (1) and (2), we find

\[x_1^L(P, T) \] and \[x_1^S(P, T) \]

A solution exists in a 2D region of the P-T phase diagram.

Notes
Three-phase, two-component system

Now assume that both components can exist in three phases: solid, liquid and gas.

Gas, liquid and solid for both phases coexist if:

\[\mu_1^S (T, P, x_1^S) = \mu_1^L (T, P, x_1^L) = \mu_1^G (T, P, x_1^G) \]

\[\mu_2^S (T, P, 1 - x_1^S) = \mu_2^L (T, P, 1 - x_1^L) = \mu_2^G (T, P, 1 - x_1^G) \]

Note that these are four equations for three unknowns: \(x_1^S \), \(x_1^L \) and \(x_1^G \).
Three-phase, two-component system

These are four equations for three unknowns: x_1^S, x_1^L and x_1^G

These means that three phases cannot coexist at arbitrary values of P and T. For a given value of T, the above 4 equations give P, x_1^S, x_1^L and x_1^G

Similarly, if four phases of a two-component system are possible, they can only coexist at a uniquely defined point (or a few points) with given pressure and temperature.

Five phases cannot generally coexist in a two-component system.
Gibbs Phase Rule

For an arbitrary system with r components and M phases.

1-component system:
- 1 phase: exists at any T and P
 2 degrees of freedom
- 2 phases: coexist on the coexistence curves $T(P)$
 1 degree of freedom
- 3 phases: coexist at a single point T_t, P_t
 0 degrees of freedom

2-component system:
- 2 phases: coexist in 2D regions of the T-P plane
 2 degrees of freedom
- 3 phases: coexist in 1D regions $T(P)$ of the T-P plane
 1 degree of freedom
- 4 phases: coexist at a finite set of points $\{T_q, P_q\}$
 0 degrees of freedom

r-component system:
- M phases:
 $2+r-M$ degrees of freedom
Gibbs Phase Rule

Gibbs phase rule: for r-component system, M phases can coexist in $2+r-M$ dimensional regions of the thermodynamic coordinate space.

$$g = g(T, P, x_1, \ldots, x_r) \quad x_1 + \ldots + x_r = 1$$

: $r+1$ thermodynamic coordinates

M phases coexist:

$$\mu_1(T, P, x_1, \ldots, x_r) = \ldots = \mu_M(T, P, x_1, \ldots, x_r)$$

: $M-1$ equations connecting thermodynamic coordinates

Therefore, there are $r+1-(M-1) = 2+r-M$ independent thermodynamic coordinates in the regions of thermodynamic coordinate space where M phases coexist.
Phase diagrams of binary systems

Behavior of mixtures of two types of substances is described by thermodynamics. The process is different from chemical reactions as no chemical transformations take place, but heat may be released and molar volumes may change upon mixing.

The molar Gibbs potential (chemical potential) for a binary system is a function of T, P and x_1 – the mole fraction of the chemical component 1 of the system.

It is convenient to represent the phase diagram of such a system on the T-x_1 plane at a fixed pressure.

Since the number of components $r = 2$ and the number of phases $M = 2$, liquid and gas phases can coexist in 2D regions of the thermodynamic coordinate space $(2+r-M)=2$
Phase diagrams of binary systems

Phase diagram for a simple two-component liquid-gas system at \(P = \text{const} \)

- Liquid
- Gas
- \(x_1 \)-rich liquid
- \(x_1 \)-rich gas
- Liquid + gas
- Hole, nothing here

Notes
Mixtures – the entropy of mixing

When considering thermodynamics of multi-components, it is important to take into account the entropy of mixing. If you have two types of molecules, then the state of them being intermixed has higher entropy than the state when they are not mixed:

\[S_1 < S_2 \]
Mixtures – the entropy of mixing

From statistical mechanical considerations (by counting the microstates), one can show that the entropy of mixing is given by:

\[\Delta S = -N \left[(1-x) \ln(1-x) + x \ln x \right] \]

Where \(x \) is the fraction of the molecules of one type in the binary mixture.
The Gibbs potential is:

\[G = U + PV - TS \]

Consider a process where we intermix two types of non-interacting molecules at constant pressure and volume. Non-interaction means that \(U \) does not change, so the change of \(G \) will only come from the \(-TS \) term:

\[\Delta G = -T\Delta S \]

Note that the resulting shape of the Gibbs potential is stable against phase separation.
Gibbs Potential of Mixtures

Now let us consider an interesting case where there is a repulsive microscopic interaction between two types of molecules (e.g. water and any hydrophobic substance such as oil).

Now as two types of atoms intermix on the microscopic level, the internal energy U increases:

$$\Delta U > 0$$

A typical variation is given by:

$$\Delta U = U_0 \left(Ax - Bx^2 \right)$$
The variation of the Gibbs potential upon mixing is more complex:

\[\Delta G = \Delta U - T \Delta S \]
Gibbs Potential of Mixtures

High temperature limit

\[\Delta G = \Delta U - T\Delta S \approx -T\Delta S \]

The Gibbs potential is stable and mixture at any concentration is stable
Gibbs Potential of Mixtures

Low temperature limit

\[\Delta G = \Delta U - T\Delta S \]

The resulting form of the Gibbs potential is unstable and will phase separate for some values of \(x \).
Phase Separation in Mixtures

Separation onto phases will lower the average Gibbs energy and thus the equilibrium state is phase separated.