
Mechanical Model of a First Order Phase Transition
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Thermal reservoir

Spheres made from materials with different coefficients of thermal expansion.

pipe

One mole of gas 

in each partition

massive freely sliding piston

Notes



Mechanical Model of a First Order Phase Transition

In the absence of spheres and at low enough temperature, the position of the 

piston at the apex of the pipe is unstable equilibrium due to the gravitational 

energy cost.

There are two equivalent stable equilibrium states. Unstable equilibrium
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Mechanical Model of a First Order Phase Transition

The total energy of the system as 

a function of position of the piston 

has two equivalent minima:

X
F

The system is best described by 

the Helmholtz free energy F (in 

contact with T but not P reservoir).

Notes



Mechanical Model of a First Order Phase Transition

In the presence of spheres and at low enough temperature, the position of the 

piston at the apex of the pipe is still unstable but the two minima are not 

equivalent at any temperature other then Tc.

Unstable equilibrium

x

Notes



Unstable equilibrium

x

The total energy of the system as 

a function of position of the piston 

has two non-equivalent minima:
X

F

T>TC

T<TC

T=TC

Mechanical Model of a First Order Phase Transition

Notes



Mechanical Model of a First Order Phase Transition

As the temperature of the system is lowered through the transition temperature Tc, 

the global energy minimum shifts from right to left. This change is discontinuous, a 

macroscopic coordinate of the system, x, changes by a discontinuous jump. 
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Role of fluctuations

As the temperature is lowered through Tc, the system initially finds itself in a local 

energy minimum (a meta-stable state). Then, as time progresses, a fluctuation will 

take the system from the local energy minimum to the global energy minimum.

In macroscopic systems, fluctuations that take system back from the global energy 

minimum to the local one are extremely rare and thus the transition in practice 

happens just once. However, in microscopic systems fluctuations can take the 

system back and forth between the local and the global minima many times.

Notes



Example: fluctuations of magnetic moment of a nanomagnet

Uniaxial ferromagnet
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elliptical nanomagnet

Two low energy states for 

the magnetic moment.

Since the magnet is small enough, fluctuations constantly take the magnet between 

the states of two opposite directions of magnetic moment.
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Van der Waals fluid
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Using vdW parameters for He gas, we 

plot the internal energy as a function of 

molar volume for fixed entropy

Notes



Van der Waals fluid
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According to the energy minimum principle, internal energy of the equilibrium state 
should be at minimum at constant entropy as a function of other extensive parameters
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Van der Waals fluid

Now let us consider a situation when He gas is in a thermal contact with a 

thermal reservoir. 

In this case, the free energy of gas has to be at minimum:
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Van der Waals fluid
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Note that at these low temperatures, vdW description of He gas is only approximate as quantum 

mechanical effects neglected by vdW become important for He at these low temperatures.

Notes



Understanding the Gibbs Potential

We know that the Gibbs potential of a system G(T,P,N) has to be minimum in 

equilibrium with respect to variation of any unconstrained coordinate of the 

system if T = const and P = const (the system in contact with temperature and 

pressure reservoirs).

What are these unconstrained internal parameters? They are not T and P 

because T = T0 and P = P0 are fixed.

However, volume V and entropy S are not constrained (their fluctuations between 

the system of interest and reservoir are allowed).
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Understanding the Gibbs Potential
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We can formally solve these two equations:

to obtain:

( )SVTT ,= ( )SVPP ,=

And substitute them back into the expression for G:

( ) ( ) ( )( ) ( )VSGSVPSVTGPTG ,,,,, ==

The equilibrium values of V and S are fixed by the conditions T=T0 and P = P0

And the G(S,V) is at minimum with respect to S and V in equilibrium.
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Understanding the Gibbs Potential

Exercise: Write down G(T,P) and G(S,V) for a vdW fluid and show that in equilibrium G

is at a minimum with respect to S and V but is at a maximum with respect to T and P.

Also remember the local stability conditions for the Gibbs potential:

0
2

2

≤
∂

∂

T

G
0

2

2

≤
∂

∂

P

G

Therefore, the Gibbs potential for a system in equilibrium is at a maximum with 

respect to S and V but is at a minimum with respect to T and P.

Notes


