
Some properties of the Helmholtz free energy
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slope is T From the properties of U vs S, it 

is clear that the Helmholtz free 

energy is always algebraically 

less than the internal energy U. 

Since F characterizes the work 

that can be extracted from the 

system, the relation F<U tells 

us that not all internal energy 

can be converted into work.
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Link to statistical physics: ( ) ( )ZTkNVTF B ln,, −=
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F is easy to calculate in statistical physics if you know the energy 

spectrum Ej of the system of interest.

Helmholtz potential  - link to statistical physics

Notes



The Helmholtz free energy and the Euler equation

From the fact that energy is a homogeneous function of the extensive parameters, 

we have derived the Euler equation:

...++−= NPVTSU µ

When we apply the Legendre transformation to U in the form of the Euler equation, 

we obtain the Euler equation for the Helmhotz free energy:

...++−=−= NPVTSUF µ

Notes



The Helmholtz free energy and the Euler equation

We can also write the Helmholtz free energy in its differential form:

...++−= dNPdVTdSdU µ

SdTTdSdUdF −−=

...++−−= dNPdVSdTdF µ

Notes



The Enthalpy

( ) PVUNPSH +=,...,,

Legendre transformation to obtain enthalpy:

Enthalpy should be used for calculation of the equilibrium state if pressure is 

maintained constant (the system of interest in contact with a pressure 

reservoir).

Notes



The Enthalpy

If the pressure is constant and the number of particles in the system does not 

change then dP = 0 and dN = 0:

QTdSdH δ==

Therefore, heat added to the system at constant pressure is equal to the 

increase of enthalpy.

...+++= dNVdPTdSdH µ

Differential of enthalpy:

Notes



The Joule-Thomson process

Fixed porous membrane

Piston 1 Piston 2

P1
P2

gas gas

The pistons move to maintain constant pressures P1 and P2 in the two regions 

while the gas is passing through a porous membrane from one region to the other.

The temperature of the gas can be changed by this process as the gas passes 

from one region to the other.

Notes



The Joule-Thomson process

Fixed porous membrane

Piston 1 Piston 2

Pi
Pf

gas gas

Let us consider a situation when 

one mole of gas was initially in the 

left region and in the final state 

was all transferred to the right 

region. 

vi – initial molar volume 

vf – initial molar volume This process is often used for refrigeration.

Note that this is not an equilibrium process!

Notes



Since the process is at a constant 

pressure, work done on the gas by the left 

piston is Pivi. Work done by the gas on the 

right piston is Pfvf. Since no heat is 

transferred to the gas from the 

environment, the internal energy of the 

gas changes by Pivi-Pfvf:

ffiiif vPvPuu −+= iiifff vPuvPu +=+ if hh =

Enthalpy of the initial and final states is the same in the Joule-Thomson process. 

The Joule-Thomson process

Fixed porous membrane

Piston 1 Piston 2

Pi
Pf

gas gas

Notes



The Joule-Thomson process

T

P

PiPf

Fro real gases, curves of 

constant enthalpy on the T-P

diagram look like this.

Therefore, if we go from the high 

initial pressure to the low final 

pressure, the temperature of gas 

will decrease.

Note that since the process is not equilibrium, the system does not go along the curve 
of constant enthalpy in the Joule-Thomson process. All the intermediate states of the 
system are non-equilibrium, only the initial and final states are equilibrium.

Notes



The Gibbs free energy

The Gibbs potential G(T,P,N,…) is convenient to use for analysis of processes at 

constant pressure P and constant temperature T. 

Most chemical reactions are carried out at ambient pressure and temperature, so 

G is the potential of choice for the description of chemical reactions.

PVTSUG +−=

Substituting the Euler equation in to the expression for G:

..2211 +++−= NNPVTSU µµ ..2211 ++= NNG µµ

Notes



The Gibbs free energy

For a single-component system: NG µ= g
N

G
==µ

Molar Gibbs free energy for a single-component system = the chemical potential

..2211 ++= NNG µµ

A chemical reaction:     2 * H2 + O2 � 2 * H2O  or 2 * H2 + 1 * O2 - 2 * H2O � 0

ν1 * A1 + ν2 * A2 + ν3 * A3 � 0Any generic 3-component reaction :

Any reaction : Σ νj * Aj � 0

Here νj are stoichiometric coefficients.

Notes



The Gibbs free energy: chemical reactions

∑++−=
j

jjdNVdPSdTdG µ

Differential form of the Gibbs free energy:

Conservation of the total number of each atomic species in 

chemical reactions demands: 

where dN is the same for all chemical components of the reaction.

dNvdN jj =

Notes



The Gibbs free energy: chemical reactions

∑++−=
j

jjdNVdPSdTdG µνTherefore:

At constant pressure and temperature: ∑=
j

jjdNdG µν

Since dN is arbitrary:

In equilibrium, dG is at minimum at constant pressure and temperature:

0== ∑
j

jjdNdG µν

( ) 0,...,,, 21 =∑
j

jj NNPTµν -chemical equilibrium condition

Notes



The Gibbs free energy: chemical reactions

Let the initial mole numbers of chemicals be: 0

jN

dNvdN jj =Integrating we obtain the final mole numbers:

NvNdNvNdNNN jjjjjj
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Where ∆N is simply a numerical factor characterizing the extent of reaction

Notes



The Gibbs free energy: chemical reactions

NvNdNvNdNNN jjjjjj

f
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Where ∆N is simply a numerical factor characterizing the extent of reaction

( ) 0,...,,, 21 =∑
j

jj NNPTµν ( ) 0,...,,, 21 =∆∆∑
j

jj NNPT ννµν

Since T, P and vj are all fixed and known, the chemical equilibrium condition 

becomes a function of a single parameter characterizing the extent of reaction, ∆N. 

Solving this equation for ∆N, we obtain the final mole numbers for the reaction.

Notes



Example: Chemical Reactions in Ideal Gas

S = N*ln(U/U0)+∑Nj*ln(Nj/N) ( ) ( )( )NNuRTRT jj /ln/ln 0 +−=µ

In lecture 5, we considered a model of reaction in an ideal gas

Then we neglected a term in entropy depending on volume of the gas. If we 

keep this term and write chemical potential in the Gibbs energy 

representation: 

( ) ( )( )
jj xuRTRT ln/ln 0 +−=µ

( ) ( ) ( )( )
jj xPuRTRT lnln/ln 0 ++−=µ

Notes



Example: Chemical Reactions in Ideal Gas

( ) ( ) ( )( )
jjj xPTRT lnln ++−= φµ

In a case of generalized ideal gas (not monoatomic), the chemical potential of 

the jth component of a mixture of ideal gases can be written as

where ( )Tjφ depends on the particular gas and xj is molar fraction of the gas

The condition of chemical equilibrium becomes:

( ) 0,...,,, 21 =∑
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( ) ( ) ( )∑∑∑ −−=
j

jj

j

j

j

jj TPx φννν lnln

Notes



Example: Chemical Reactions in Ideal Gas

( ) ( ) ( )∑∑∑ −−=
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It is customary to define the equilibrium constant of a reaction K(T)

( )( ) ( )∑−=
j

jj TTK φνln

With this definition, the equilibrium condition can be written in the form of the 

mass action law:

( )TKPx j jj
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Notes



Example: Chemical Reactions in Ideal Gas

The mass action law in combination with the conservation of atomic species gives 

the equilibrium mole fractions for the reacting mixture of gases

Example: Consider a reaction of oxygen and hydrogen to form water:

222
2

1
OHOH +⇔

Two moles of water are heated to T = 2000 K at P =1 MPa. What is the 

equilibrium composition of the gases in the following reaction?

The equilibrium constant for this reaction is K(2000)=0.0877 [Pa1/2]

Notes



Example: Thermal Decomposition of Water
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Conservation of atomic species gives:
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Example: Thermal Decomposition of Water
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The total mole numbers in the reaction:

Notes



Example: Thermal Decomposition of Water
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This is a cubic equation for ∆N. It can either be solved numerically or analytically. 

The result is ∆N =0.005.

9963.0
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=OHx 0025.0
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=Hx 0012.0
2

=Ox

A simplified solution is obtained if we calculate K2(T)/P first. K2(T)/P = (0.0877)2 10-6. 

From this it is clear that ∆N is small and we can write:
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