
The Energy Minimum Principle

We have learned that in equilibrium entropy of a thermodynamic system and its 

environment is maximized

In classical physics, we know that static equilibrium of mechanical objects is 

achieved by minimizing their energy

We will show that there is a connection between the entropy maximum and the 

energy minimum principles

The entropy maximum principle was introduced first because it has clear 

microscopic explanation – a macrostate with maximum entropy is realized by the 

maximum number of microstates. Now we will derive the energy minimum 

principle from the entropy maximum principle.
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The energy minimum principle

We have introduced energy and entropy representations of the fundamental relation:

( ),...,, NVUSS =( ),...,, NVSUU =

One of these two representations is more convenient than the other for each 

particular problem (e. g. when equations of state are known as functions of U

and V, the entropy representation is more convenient).

However, we have only formulated the extremum (maximum) principle in the 

entropy representation. In many cases, it is convenient to work in the energy 

representation and thus to have an extremum principle for energy.
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The energy minimum principle: geometric argument

Plot of the entropy, S, of a composite system 

as a function of the  energy, U, of the 

composite system and any other 

unconstrained extensive parameter.

For a fixed total energy U, the unconstrained 

extensive parameters take values that 

maximize the total entropy S.
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The energy minimum principle: geometric argument

Now we note that the same state has 

minimum energy for this particular value of 

entropy! This is the consequence of the 

properties of S vs U, namely that 

Therefore, for a fixed total entropy S, the 

unconstrained extensive parameters take 

values that minimize the total energy U.
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Legendre Transformations

- In both energy and entropy representations, the extensive coordinates (V, N ...)

are independent variables while the conjugate intensive coordinates (P, µ …) are 
derivatives.

- It is often more convenient to have intensive coordinates such as P and T as 

independent variables because they are simpler to control in experiments.

- Therefore, we need a formulation of thermodynamics in which intensive 
coordinates play roles of independent variables.

- This formulation of thermodynamics can be obtained from the one we developed 

in the energy representation by a mathematical trick called the Legendre
transformation.

- The Legendre transformations are very common in physics, for example they are 

used to derive the Hamilton formalism from the Lagrange formalism in mechanics.
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Legendre Transformations
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Our goal is to derive a function of variables P that also contains all 

information about the system of interest.

Let us assume that this function contains all information about the system of 

interest (it is a fundamental relation)
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1D Example

Let us consider a fundamental relation ( )XYY =

then ( ) ( )
dX

XdY
XP =

We would like to get a form of the fundamental relation where P is the independent 

variable.
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Substitute the result into the fundamental relation: ( ) )()( PfPXYY ==

This approach does not work because f(P) has less information than Y(X) !
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1D Example

Let us use an example to illustrate why this approach does not work
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What is wrong with this new fundamental relation?  We lost some information that 

was present in the original fundamental relation Y = X2-1

How cane we prove that we lost information? If we have not lost information, then 

we should be able to reconstruct Y(X) given our Y(P). 
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1D Example
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We failed to unambiguously reconstruct the original 

fundamental relation because now we have an arbitrary 

constant which cannot be determined. We need another 

way of generating a fundamental relation as a function of P !
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Legendre Transformations: 1D case

The correct solution of the problem has its roots in the so-called line geometry. 

The main idea is that a curve can be equally represented as either a set of 

points or a set of tangential lines.
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Point geometry Line geometry

For each value of X, we specify a value of Y.

Point is described by two numbers: X and Y

For each point of the curve, we specify a tangential 

line: P*X+ψ
Point is described by two numbers: P and ψ

ψ
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Legendre Transformations: 1D case

The relation Y(X) singles out a 

subset of points in the (X,Y) plane 

that represents our function.

The relation ψ(P) singles out a 
subset of tangential lines among all 

possible lines (ψ,P) that represents 
our function.

The function ψ(P) relates slope P to the ordinate intercept ψ of the tangential 
lines. This function unambiguously reconstructs Y(X) and thus carries all the 

information contained in Y(X). Thus ψ(P) can serve as a fundamental relation 
with intensive independent parameter (because P is the slope of Y(X) and 

this is the derivative ∂Y/∂X). 
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Legendre Transformations: 1D case

How to calculate ψ(P) given the relation Y(X) ?

We have a function ψ(P) that goes through a point with coordinates (X,Y) and 

has a  slope P and y-axis intercept ψ:
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To eliminate X and Y from the above equation, we need two more equations which 

are:
( )XYY = and ( ) ( )XPXYP == '

ψψψψ(P) is called a Legendre transform of Y(X)
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Legendre Transformation: 1D Example

Let us consider how Legendre transformation applies to our 1D example:
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Inverse Legendre Transformations: 1D case

PXY −=ψDifferentiating XdPXdPPdXdYd −=−−=ψ

because 0=− PdXdY
dX

dY
P = (true by definition of P)

Therefore: 
dP

d
X

ψ
−=

Using this relation along with ( )Pψψ = and XPY +=ψ

We can recover ( )XYY =

This is the inverse Legendre transform
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Inverse Legendre Transformation: 1D Example

Let us consider how inverse Legendre transformation applies to our 1D example:
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The inverse Legendre transformation has 

recovered the original fundamental relation!
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Legendre Transformations: arbitrary dimensionality
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One may also have partial Legendre transformations, when the function Y

is transformed only with respect to some of its coordinates.
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Thermodynamic potentials

By applying Legendre transformations to the fundamental relation in the energy 

representation, we can obtain various thermodynamic potentials
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Transformation with respect to S only: Helmholtz free energy F
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Solve these two equations to eliminate S and U

(express S and U as functions of the rest of the 

variables). Then substitute these S and U into 

the Legendre transform:
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Thermodynamic potentials

Transformation with respect to V only: Enthalpy H
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Solve these two equations to eliminate 

V and U (express V and U as function of 

the rest of the variables). Then 

substitute these V and U into the 

Legendre transform:

Notes



Transformation with respect to both S and V: Gibbs free energy G

Thermodynamic potentials
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Solve these two equations to eliminate S, V and U (express S, V

and U as function of the rest of the variables). Then substitute 

these S, V and U into the Legendre transform:
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