Introduction to Superconductivity

Superconductivity was discovered in 1911
by Kamerlingh Onnes.
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Meissner Effect

« Magnetic field expelled. Superconducting surface
current ensures B=0 inside the superconductor.
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Flux Quantization

O =[Bedd=n®,

where the “flux
quantum” @, is
given by
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Type | superconductors expel the magnetic field

totally, but if the field is too big, the

superconductivity is destroyed.



Type |l Superconductors

For intermediate field strengths, there is partial field
penetration in the form of vortex lines of magnetic flux.
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Vortices

Each vortex contains 1 flux quantum ®_=hc/2e.

The superconducting order parameter goes to
zero at the center of a flux quantum. The core of

the vortex has normal electrons.
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Explanation of Superconductivity

* Ginzburg-Landau
Order Parameter Y
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Think of this as a
wavefunction
describing all the
electrons. Phase 6
wants to be
spatially uniform Ie 1
(“phase rigidity”).




BCS Theory

(Bardeen-Cooper-Schrieffer)

» Electrons are paired into Cooper pairs.
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Josephson | s« | ms | sco
Effect

If we put 2 superconductors next to each other separated by a thin
insulating layer, the phase difference (8,-8,) between the 2
superconductors will cause a current of superconducting Cooper
pairs to flow between the superconductors. Current flow without

batteries! This is the Josephson effect.

Josephson Tunnel Junction
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J=J sin(@2 — 91) =J sin® where J 1is the critical

current density and 0 is the phase difference.



Josephson Junction Washboard Potential
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potential tilts with
application of
external current.
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SQUIDs

(~ 2 slit device for superconducting
wave functions)

SQUID is a Superconducting QUantum
Interference Device.

DC SQUID is a loop with 2 Josephson
junctions.

Phase difference around the loop | |
proportional to magnetic flux through loop.

Current through the SQUID is modulated by JJ El' JJ
the magnetic flux through loop. H

SQUIDs are sensitive detectors of the
amount of magnetic flux ® through the loop.

SQUIDs can be used as qubits (quantum
bits).




Why is Quantum Computing Useful?
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 Parallel computation of exponentially-large states

* Factorization of large numbers into prime numbers (Shor) (cryptography)
Exponential speedup of algorithm

« Fast search algorithms (Grover) {n'?2vs. n}

* Adiabatic algorithms for minimization (Farhi)

« Simulation of quantum systems (Feynman)

* Other? (Quantum Information Theory)



Challenge: Coupling vs. Decoherence
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Experimental challenge:
Couple qubits to each other, and control, & measure,
Avoid coupling qubits to noise and dissipation

Qubit 1s a quantum bit
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Experimental Systems

Atoms EM modes

 Photons

Feynmann (1985): * lons
“it seems that the laws of * Neutral Atoms
physics present no e NMR
barrier to reducing the
size of computers until
bits are the size of atoms,
and quantum behavior
holds sway.”
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Josephson Junction Qubit Taxonomy

Phase
States are a 2 different
linear energy
combination states in
of one well

of JJ

potential.
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Quantum Computing and Qubits

Josephson junctions can be used to construct qubits.

« Major Advantage: scalability using integrated circuit (IC)
fabrication technology.

« Major Obstacle: Noise and Decoherence
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J. M. Martinis et al., PRL 89, 117901 (2002).



High Temperature Superconductors

The high temperature superconductors have
high transition temperatures.

YBa,Cu,0,; (YBCO) T.=92 K

Bi,Sr,CaCu,0, (BSCCO) |T=90 K

: : Cu O Cu—20O
The basis of the high temperature

superconductors are copper-oxygen 0O Cu— O — Cu
planes. These planes are separated
from other copper-oxygen planes by . S R
junk. The superconducting current ‘ | ‘ ‘
flows more easily 1n the planes than

between the planes.
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High Temperature Superconductivity Phase
Diagram
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Type II Superconductors

For intermediate field strengths, there is partial field
penetration in the form of vortex lines of magnetic flux.
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Vortices in Layered Superconductors

In a layered superconductor the planes are
superconducting and the vortex lines are
correlated stacks of pancakes (H || C). A pancake
1s a vortex 1n a plane. Josephson tunneling occurs
between planes. So if H || ab, we get Josephson
vortices.
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Vortices

Each vortex contains 1 flux quantum ®_=hc/2e. The
superconducting order parameter goes to zero at the
center of a flux quantum. The core of the vortex has

normal electrons.
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[Lorentz Force on Vortices

When a transport current flows, vortices experience
a Lorentz force per unit length

(I)o
C

where the flux quantum ®_=hc/2e and 1ts direction
1s parallel to B locally. This force 1s analogous to

the force density
K B (F _ ﬁvaj
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Vortex Motion

If the vortices move, they produce resistance
because their cores have normal electrons.
Vortices are often pinned by inhomogeneities
which prevent vortex motion until the critical
current density J- 1s reached. The vortices

break free for J > J ..
TB
[ [ { {
quuiive




Abrikosov Flux Lattice
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In a clean type II superconductor, repulsive interactions
between vortices lead to an Abrikosov flux lattice.
Traditionally this is a triangular lattice. At higher T and
H, the flux lattice can melt into a flux liquid.



First Order Phase Transitions

A ““phase transition” occurs when a system undergoes a
transformation from one phase to another. Going from water to ice
(or liquid to crystalline solid) 1s an example of a “first order phase
transition.” Typically a first order phase transition 1s associated with
a volume change; ice expands. First order phase transitions are also
associated with a discontinuity AS in the entropy. The entropy of
the liquid S, 1s greater than the entropy of the solid Sq and AS =S, -
Sq. The latent heat L 1s given by
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Abrikosov Flux Lattice
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In a clean type II superconductor, repulsive interactions
between vortices lead to an Abrikosov flux lattice.
Traditionally this is a triangular lattice. At higher T and
H, the flux lattice can melt into a flux liquid.



Phase Diagram
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In a clean type II superconductor, there 1s an Abrikosov
flux lattice at low T and H. At higher T and H, the flux
lattice can melt into a flux liquid. The melting 1s like ice
melting 1into water. Just as ice expands upon freezing, so
the vortex lattice expands upon freezing. This produces a
jump 1n the magnetization as well as other effects.



THE END




